These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28500456)

  • 1. Sex differences in spatial accuracy relate to the neural activation of antagonistic muscles in young adults.
    Casamento-Moran A; Hunter SK; Chen YT; Kwon MH; Fox EJ; Yacoubi B; Christou EA
    Exp Brain Res; 2017 Aug; 235(8):2425-2436. PubMed ID: 28500456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor plan differs for young and older adults during similar movements.
    Casamento-Moran A; Chen YT; Lodha N; Yacoubi B; Christou EA
    J Neurophysiol; 2017 Apr; 117(4):1483-1488. PubMed ID: 28077666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromuscular control of goal-directed ankle movements differs for healthy children and adults.
    Fox EJ; Moon H; Kwon M; Chen YT; Christou EA
    Eur J Appl Physiol; 2014 Sep; 114(9):1889-99. PubMed ID: 24906445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-associated impairement in endpoint accuracy of goal-directed contractions performed with two fingers is due to altered activation of the synergistic muscles.
    Chen YT; Pinto Neto O; de Miranda Marzullo AC; Kennedy DM; Fox EJ; Christou EA
    Exp Gerontol; 2012 Jul; 47(7):519-26. PubMed ID: 22580059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging and limb alter the neuromuscular control of goal-directed movements.
    Kwon M; Chen YT; Fox EJ; Christou EA
    Exp Brain Res; 2014 Jun; 232(6):1759-71. PubMed ID: 24557320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-gain visual feedback exacerbates ankle movement variability in children.
    Moon H; Kim C; Kwon M; Chen YT; Fox E; Christou EA
    Exp Brain Res; 2015 May; 233(5):1597-606. PubMed ID: 25744054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular variability and spatial accuracy in children and older adults.
    Casamento-Moran A; Fleeman R; Chen YT; Kwon M; Fox EJ; Yacoubi B; Christou EA
    J Electromyogr Kinesiol; 2018 Aug; 41():27-33. PubMed ID: 29723799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans.
    Lavoie BA; Devanne H; Capaday C
    J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endpoint accuracy for a small and a large hand muscle in young and old adults during rapid, goal-directed isometric contractions.
    Poston B; Enoka JA; Enoka RM
    Exp Brain Res; 2008 May; 187(3):373-85. PubMed ID: 18288474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Older adults use a motor plan that is detrimental to endpoint control.
    Delmas S; Choi YJ; Komer M; Weintraub M; Yacoubi B; Christou EA
    Sci Rep; 2021 Apr; 11(1):7562. PubMed ID: 33828133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnified visual feedback exacerbates positional variability in older adults due to altered modulation of the primary agonist muscle.
    Baweja HS; Kwon M; Christou EA
    Exp Brain Res; 2012 Oct; 222(4):355-64. PubMed ID: 22948735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different neural adjustments improve endpoint accuracy with practice in young and old adults.
    Christou EA; Poston B; Enoka JA; Enoka RM
    J Neurophysiol; 2007 May; 97(5):3340-50. PubMed ID: 17376846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ballistic reactions under different motor sets.
    Castellote JM; Valls-Solé J; Sanegre MT
    Exp Brain Res; 2004 Sep; 158(1):35-42. PubMed ID: 15007585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered activation of the antagonist muscle during practice compromises motor learning in older adults.
    Chen YT; Kwon M; Fox EJ; Christou EA
    J Neurophysiol; 2014 Aug; 112(4):1010-9. PubMed ID: 24848478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voluntary reduction of force variability via modulation of low-frequency oscillations.
    Park SH; Casamento-Moran A; Yacoubi B; Christou EA
    Exp Brain Res; 2017 Sep; 235(9):2717-2727. PubMed ID: 28608243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric activation of motor cortex controlling human anterior digastric muscles during speech and target-directed jaw movements.
    Sowman PF; Flavel SC; McShane CL; Sakuma S; Miles TS; Nordstrom MA
    J Neurophysiol; 2009 Jul; 102(1):159-66. PubMed ID: 19420123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. fMRI analysis for motor paradigms using EMG-based designs: a validation study.
    van Rootselaar AF; Renken R; de Jong BM; Hoogduin JM; Tijssen MA; Maurits NM
    Hum Brain Mapp; 2007 Nov; 28(11):1117-27. PubMed ID: 17274019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.