BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 28500710)

  • 1. Characterization of the Blue-Light-Activated Adenylyl Cyclase mPAC by Flash Photolysis and FTIR Spectroscopy.
    Kerruth S; Langner P; Raffelberg S; Gärtner W; Heberle J
    Photochem Photobiol; 2017 May; 93(3):857-864. PubMed ID: 28500710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium Microcoleus chthonoplastes PCC 7420.
    Raffelberg S; Wang L; Gao S; Losi A; Gärtner W; Nagel G
    Biochem J; 2013 Nov; 455(3):359-65. PubMed ID: 24112109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy.
    Kerruth S; Ataka K; Frey D; Schlichting I; Heberle J
    PLoS One; 2014; 9(7):e103307. PubMed ID: 25058114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by low-temperature FTIR and UV-visible spectroscopy.
    Iwata T; Nozaki D; Tokutomi S; Kagawa T; Wada M; Kandori H
    Biochemistry; 2003 Jul; 42(27):8183-91. PubMed ID: 12846567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoreaction of photoactivated adenylate cyclase from cyanobacterium Microcoleus chthonoplastes.
    Ikoma M; Nakasone Y; Terazima M
    J Photochem Photobiol B; 2021 Aug; 221():112252. PubMed ID: 34265548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cyanobacterial light activated adenylyl cyclase partially restores development of a Dictyostelium discoideum, adenylyl cyclase a null mutant.
    Chen ZH; Raffelberg S; Losi A; Schaap P; Gärtner W
    J Biotechnol; 2014 Dec; 191():246-9. PubMed ID: 25128613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonated triplet-excited flavin resolved by step-scan FTIR spectroscopy: implications for photosensory LOV domains.
    Thöing C; Pfeifer A; Kakorin S; Kottke T
    Phys Chem Chem Phys; 2013 Apr; 15(16):5916-26. PubMed ID: 23493824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional variations among LOV domains as revealed by FT-IR difference spectroscopy.
    Bednarz T; Losi A; Gartner W; Hegemann P; Heberle J
    Photochem Photobiol Sci; 2004 Jun; 3(6):575-9. PubMed ID: 15170487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a histidine ligand in the photosynthetic oxygen-evolving complex as studied by light-induced fourier transform infrared difference spectroscopy.
    Noguchi T; Inoue Y; Tang XS
    Biochemistry; 1999 Aug; 38(31):10187-95. PubMed ID: 10433727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved FTIR spectroscopy of the photointermediates involved in fast transient H+ release by proteorhodopsin.
    Xiao Y; Partha R; Krebs R; Braiman M
    J Phys Chem B; 2005 Jan; 109(1):634-41. PubMed ID: 16851056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay among the "flipping" glutamine, a conserved phenylalanine, water and hydrogen bonds within a blue-light sensing LOV domain.
    Polverini E; Schackert FK; Losi A
    Photochem Photobiol Sci; 2020 Jul; 19(7):892-904. PubMed ID: 32579655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indication for a radical intermediate preceding the signaling state in the LOV domain photocycle.
    Bauer C; Rabl CR; Heberle J; Kottke T
    Photochem Photobiol; 2011; 87(3):548-53. PubMed ID: 21255020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
    Kottke T; Batschauer A; Ahmad M; Heberle J
    Biochemistry; 2006 Feb; 45(8):2472-9. PubMed ID: 16489739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protonation structures of Cys-sulfinic and Cys-sulfenic acids in the photosensitive nitrile hydratase revealed by Fourier transform infrared spectroscopy.
    Noguchi T; Nojiri M; Takei K; Odaka M; Kamiya N
    Biochemistry; 2003 Oct; 42(40):11642-50. PubMed ID: 14529274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-dynamics of photoactivated adenylyl cyclase TpPAC from the spirochete bacterium Turneriella parva strain H(T).
    Penzkofer A; Tanwar M; Veetil SK; Kateriya S
    J Photochem Photobiol B; 2015 Dec; 153():90-102. PubMed ID: 26398816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy.
    Morgan JE; Vakkasoglu AS; Gennis RB; Maeda A
    Biochemistry; 2007 Mar; 46(10):2787-96. PubMed ID: 17300175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Gln1029 in the photoactivation processes of the LOV2 domain in adiantum phytochrome3.
    Nozaki D; Iwata T; Ishikawa T; Todo T; Tokutomi S; Kandori H
    Biochemistry; 2004 Jul; 43(26):8373-9. PubMed ID: 15222749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier transform infrared difference study of tyrosineD oxidation and plastoquinone QA reduction in photosystem II.
    Hienerwadel R; Boussac A; Breton J; Berthomieu C
    Biochemistry; 1996 Dec; 35(48):15447-60. PubMed ID: 8952498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive cysteine is protonated in the triplet excited state of the LOV2 domain in Adiantum phytochrome3.
    Sato Y; Iwata T; Tokutomi S; Kandori H
    J Am Chem Soc; 2005 Feb; 127(4):1088-9. PubMed ID: 15669833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.
    Zabelin AA; Neverov KV; Krasnovsky AA; Shkuropatova VA; Shuvalov VA; Shkuropatov AY
    Biochim Biophys Acta; 2016 Jun; 1857(6):782-8. PubMed ID: 27040752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.