These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28500721)

  • 1. Structural and Vibrational Characterization of the Chromophore Binding Site of Bacterial Phytochrome Agp1.
    Takiden A; Velazquez-Escobar F; Dragelj J; Woelke AL; Knapp EW; Piwowarski P; Bart F; Hildebrandt P; Mroginski MA
    Photochem Photobiol; 2017 May; 93(3):713-723. PubMed ID: 28500721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores.
    Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T
    Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr- and Pfr-like adducts.
    Inomata K; Hammam MA; Kinoshita H; Murata Y; Khawn H; Noack S; Michael N; Lamparter T
    J Biol Chem; 2005 Jul; 280(26):24491-7. PubMed ID: 15878872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.
    Lamparter T; Michael N
    Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced activation of bacterial phytochrome Agp1 monitored by static and time-resolved FTIR spectroscopy.
    Piwowarski P; Ritter E; Hofmann KP; Hildebrandt P; von Stetten D; Scheerer P; Michael N; Lamparter T; Bartl F
    Chemphyschem; 2010 Apr; 11(6):1207-14. PubMed ID: 20333618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers.
    Nagano S; Scheerer P; Zubow K; Michael N; Inomata K; Lamparter T; Krauß N
    J Biol Chem; 2016 Sep; 291(39):20674-91. PubMed ID: 27466363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: reconciling structural and spectroscopic data by QM/MM calculations.
    Mroginski MA; von Stetten D; Escobar FV; Strauss HM; Kaminski S; Scheerer P; Günther M; Murgida DH; Schmieder P; Bongards C; Gärtner W; Mailliet J; Hughes J; Essen LO; Hildebrandt P
    Biophys J; 2009 May; 96(10):4153-63. PubMed ID: 19450486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis.
    Borucki B; Seibeck S; Heyn MP; Lamparter T
    Biochemistry; 2009 Jul; 48(27):6305-17. PubMed ID: 19496558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation.
    von Stetten D; Seibeck S; Michael N; Scheerer P; Mroginski MA; Murgida DH; Krauss N; Heyn MP; Hildebrandt P; Borucki B; Lamparter T
    J Biol Chem; 2007 Jan; 282(3):2116-23. PubMed ID: 17121858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes.
    Salewski J; Escobar FV; Kaminski S; von Stetten D; Keidel A; Rippers Y; Michael N; Scheerer P; Piwowarski P; Bartl F; Frankenberg-Dinkel N; Ringsdorf S; Gärtner W; Lamparter T; Mroginski MA; Hildebrandt P
    J Biol Chem; 2013 Jun; 288(23):16800-16814. PubMed ID: 23603902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1.
    Velazquez Escobar F; Lang C; Takiden A; Schneider C; Balke J; Hughes J; Alexiev U; Hildebrandt P; Mroginski MA
    J Phys Chem B; 2017 Jan; 121(1):47-57. PubMed ID: 27966353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1.
    Lamparter T; Carrascal M; Michael N; Martinez E; Rottwinkel G; Abian J
    Biochemistry; 2004 Mar; 43(12):3659-69. PubMed ID: 15035636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protonation state and structural changes of the tetrapyrrole chromophore during the Pr --> Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study.
    Kneip C; Hildebrandt P; Schlamann W; Braslavsky SE; Mark F; Schaffner K
    Biochemistry; 1999 Nov; 38(46):15185-92. PubMed ID: 10563801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein conformational changes of Agrobacterium phytochrome Agp1 during chromophore assembly and photoconversion.
    Noack S; Michael N; Rosen R; Lamparter T
    Biochemistry; 2007 Apr; 46(13):4164-76. PubMed ID: 17335289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr.
    Zienicke B; Molina I; Glenz R; Singer P; Ehmer D; Escobar FV; Hildebrandt P; Diller R; Lamparter T
    J Biol Chem; 2013 Nov; 288(44):31738-51. PubMed ID: 24036118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protonation of the Biliverdin IXα Chromophore in the Red and Far-Red Photoactive States of a Bacteriophytochrome.
    Modi V; Donnini S; Groenhof G; Morozov D
    J Phys Chem B; 2019 Mar; 123(10):2325-2334. PubMed ID: 30762368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site.
    Lamparter T; Michael N; Mittmann F; Esteban B
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11628-33. PubMed ID: 12186972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved fluorescence anisotropy with Atto 488-labeled phytochrome Agp1 from Agrobacterium fabrum.
    Elkurdi A; Guigas G; Hourani-Alsharafat L; Scheerer P; Nienhaus GU; Krauß N; Lamparter T
    Photochem Photobiol; 2024; 100(3):561-572. PubMed ID: 37675785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization and preliminary X-ray crystallographic analysis of the N-terminal photosensory module of phytochrome Agp1, a biliverdin-binding photoreceptor from Agrobacterium tumefaciens.
    Scheerer P; Michael N; Park JH; Noack S; Förster C; Hammam MA; Inomata K; Choe HW; Lamparter T; Krauss N
    J Struct Biol; 2006 Jan; 153(1):97-102. PubMed ID: 16377207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common Structural Elements in the Chromophore Binding Pocket of the Pfr State of Bathy Phytochromes.
    Velázquez Escobar F; Buhrke D; Michael N; Sauthof L; Wilkening S; Tavraz NN; Salewski J; Frankenberg-Dinkel N; Mroginski MA; Scheerer P; Friedrich T; Siebert F; Hildebrandt P
    Photochem Photobiol; 2017 May; 93(3):724-732. PubMed ID: 28500706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.