BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28500892)

  • 1. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula.
    Shehab NA; Ortiz-Medina JF; Katuri KP; Hari AR; Amy G; Logan BE; Saikaly PE
    Bioresour Technol; 2017 Sep; 239():82-86. PubMed ID: 28500892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment of
    Alqahtani MF; Bajracharya S; Katuri KP; Ali M; Ragab A; Michoud G; Daffonchio D; Saikaly PE
    Front Microbiol; 2019; 10():2563. PubMed ID: 31787955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific enrichment of hyperthermophilic electroactive Archaea from deep-sea hydrothermal vent on electrically conductive support.
    Pillot G; Frouin E; Pasero E; Godfroy A; Combet-Blanc Y; Davidson S; Liebgott PP
    Bioresour Technol; 2018 Jul; 259():304-311. PubMed ID: 29573609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insertion sequences enrichment in extreme Red sea brine pool vent.
    Elbehery AH; Aziz RK; Siam R
    Extremophiles; 2017 Mar; 21(2):271-282. PubMed ID: 27915389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into Red Sea Brine Pool Specialized Metabolism Gene Clusters Encoding Potential Metabolites for Biotechnological Applications and Extremophile Survival.
    Ziko L; Adel M; Malash MN; Siam R
    Mar Drugs; 2019 May; 17(5):. PubMed ID: 31071993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment.
    Wang N; Feng Y; Li Y; Zhang L; Liu J; Li N; He W
    Water Res; 2022 Jul; 219():118570. PubMed ID: 35597221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea.
    Wang Y; Yang J; Lee OO; Dash S; Lau SC; Al-Suwailem A; Wong TY; Danchin A; Qian PY
    ISME J; 2011 Oct; 5(10):1652-9. PubMed ID: 21525946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari.
    Yilmazel YD; Zhu X; Kim KY; Holmes DE; Logan BE
    Bioelectrochemistry; 2018 Feb; 119():142-149. PubMed ID: 28992595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Adaptations of Bacterial Mercuric Reductase to the Hypersaline Kebrit Deep in the Red Sea.
    Ramadan E; Maged M; El Hosseiny A; Chambergo FS; Setubal JC; El Dorry H
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30504211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC).
    Liu W; Wang A; Sun D; Ren N; Zhang Y; Zhou J
    J Biotechnol; 2012 Feb; 157(4):628-32. PubMed ID: 21939699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damage of anodic biofilms by high salinity deteriorates PAHs degradation in single-chamber microbial electrolysis cell reactor.
    Ding P; Wu P; Jie Z; Cui MH; Liu H
    Sci Total Environ; 2021 Jul; 777():145752. PubMed ID: 33684746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities.
    Pasupuleti SB; Srikanth S; Venkata Mohan S; Pant D
    Bioresour Technol; 2015 Nov; 195():131-8. PubMed ID: 26187582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining the deep Red-Sea brine pool microbial community for anticancer therapeutics.
    Esau L; Zhang G; Sagar S; Stingl U; Bajic VB; Kaur M
    BMC Complement Altern Med; 2019 Jun; 19(1):142. PubMed ID: 31221160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.
    Lu L; Xing D; Ren N
    Water Res; 2012 May; 46(7):2425-34. PubMed ID: 22374298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea brine pool.
    Mohamed YM; Ghazy MA; Sayed A; Ouf A; El-Dorry H; Siam R
    Sci Rep; 2013 Nov; 3():3358. PubMed ID: 24285146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring a highly conductive and super-hydrophilic electrode for biocatalytic performance of microbial electrolysis cells.
    Park SG; Rhee C; Jadhav DA; Eisa T; Al-Mayyahi RB; Shin SG; Abdelkareem MA; Chae KJ
    Sci Total Environ; 2023 Jan; 856(Pt 1):159105. PubMed ID: 36181811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Stability of a Mercuric Reductase from the Red Sea Atlantis II Hot Brine Environment as Analyzed by Site-Directed Mutagenesis.
    Maged M; El Hosseiny A; Saadeldin MK; Aziz RK; Ramadan E
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells.
    Lu L; Xing D; Ren N; Logan BE
    Bioresour Technol; 2012 Nov; 124():68-76. PubMed ID: 22989636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioanode as a limiting factor to biocathode performance in microbial electrolysis cells.
    Lim SS; Yu EH; Daud WRW; Kim BH; Scott K
    Bioresour Technol; 2017 Aug; 238():313-324. PubMed ID: 28454006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge.
    Zakaria BS; Lin L; Dhar BR
    Sci Total Environ; 2019 Nov; 689():691-699. PubMed ID: 31280150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.