These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 28500914)
1. Limitations of experiments performed in artificially made OECD standard soils for predicting cadmium, lead and zinc toxicity towards organisms living in natural soils. Sydow M; Chrzanowski Ł; Cedergreen N; Owsianiak M J Environ Manage; 2017 Aug; 198(Pt 2):32-40. PubMed ID: 28500914 [TBL] [Abstract][Full Text] [Related]
2. Toxicity testing of heavy-metal-polluted soils with algae Selenastrum capricornutum: a soil suspension assay. Aruoja V; Kurvet I; Dubourguier HC; Kahru A Environ Toxicol; 2004 Aug; 19(4):396-402. PubMed ID: 15269912 [TBL] [Abstract][Full Text] [Related]
3. Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium. Kahru A; Ivask A; Kasemets K; Põllumaa L; Kurvet I; François M; Dubourguier HC Environ Toxicol Chem; 2005 Nov; 24(11):2973-82. PubMed ID: 16398136 [TBL] [Abstract][Full Text] [Related]
4. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Lamb DT; Ming H; Megharaj M; Naidu R J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626 [TBL] [Abstract][Full Text] [Related]
5. Improvement of the applicability of ecotoxicological tests with earthworms, springtails, and plants for the assessment of metals in natural soils. Römbke J; Jänsch S; Junker T; Pohl B; Scheffczyk A; Schallnass HJ Environ Toxicol Chem; 2006 Mar; 25(3):776-87. PubMed ID: 16566163 [TBL] [Abstract][Full Text] [Related]
6. Lability, solubility and speciation of Cd, Pb and Zn in alluvial soils of the River Trent catchment UK. Izquierdo M; Tye AM; Chenery SR Environ Sci Process Impacts; 2013 Oct; 15(10):1844-58. PubMed ID: 23989468 [TBL] [Abstract][Full Text] [Related]
7. Effects of pH on the toxicity of cadmium, copper, lead and zinc to Folsomia candida Willem, 1902 (Collembola) in a standard laboratory test system. Sandifer RD; Hopkin SP Chemosphere; 1996 Dec; 33(12):2475-86. PubMed ID: 8976058 [TBL] [Abstract][Full Text] [Related]
8. Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in earthworms (Oligochaeta) in laboratory and field soils: a critical evaluation of data. Weltje L Chemosphere; 1998 May; 36(12):2643-60. PubMed ID: 9570111 [TBL] [Abstract][Full Text] [Related]
9. Fractions affected and probabilistic risk assessment of Cu, Zn, Cd, and Pb in soils using the free ion approach. Lofts S; Spurgeon D; Svendsen C Environ Sci Technol; 2005 Nov; 39(21):8533-40. PubMed ID: 16294898 [TBL] [Abstract][Full Text] [Related]
10. Impact of metal pools and soil properties on metal accumulation in Folsomia candida (Collembola). Vijver M; Jager T; Posthuma L; Peijnenburg W Environ Toxicol Chem; 2001 Apr; 20(4):712-20. PubMed ID: 11345445 [TBL] [Abstract][Full Text] [Related]
11. Ecotoxicological risks of the abandoned F-Ba-Pb-Zn mining area of Osor (Spain). Bori J; Vallès B; Navarro A; Riva MC Environ Geochem Health; 2017 Jun; 39(3):665-679. PubMed ID: 27260479 [TBL] [Abstract][Full Text] [Related]
12. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH. Wang X; Ji D; Chen X; Ma Y; Yang J; Ma J; Li X Environ Pollut; 2017 Nov; 230():210-217. PubMed ID: 28688297 [TBL] [Abstract][Full Text] [Related]
13. Predicting plant uptake and toxicity of lead (Pb) in long-term contaminated soils from derived transfer functions. Kader M; Lamb DT; Mahbub KR; Megharaj M; Naidu R Environ Sci Pollut Res Int; 2016 Aug; 23(15):15460-70. PubMed ID: 27117154 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil. An J; Jeong S; Moon HS; Jho EH; Nam K J Hazard Mater; 2012 Feb; 203-204():69-76. PubMed ID: 22197563 [TBL] [Abstract][Full Text] [Related]
15. Plants growing on contaminated and brownfield sites appropriate for use in Organisation for Economic Co-operation and Development terrestrial plant growth test. Sinnett DE; Lawrence VK; Hutchings TR; Hodson ME Environ Toxicol Chem; 2011 Jan; 30(1):124-31. PubMed ID: 20853450 [TBL] [Abstract][Full Text] [Related]
16. [Assessment of toxicity of heavy metal contaminated soils by toxicity characteristic leaching procedure]. Sun YF; Xie ZM; Xu JM; Li J; Zhao KL Huan Jing Ke Xue; 2005 May; 26(3):152-6. PubMed ID: 16124489 [TBL] [Abstract][Full Text] [Related]
17. Determining toxicity of lead and zinc runoff in soils: salinity effects on metal partitioning and on phytotoxicity. Stevens DP; McLaughlin MJ; Heinrich T Environ Toxicol Chem; 2003 Dec; 22(12):3017-24. PubMed ID: 14713044 [TBL] [Abstract][Full Text] [Related]
18. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect. Smith EJ; Hughes S; Lawlor AJ; Lofts S; Simon BM; Stevens PA; Stidson RT; Tipping E; Vincent CD Environ Pollut; 2005 Jul; 136(1):11-8. PubMed ID: 15809104 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of the effects of metal contamination on Collembola in the field and in the laboratory. Fountain MT; Hopkin SP Ecotoxicology; 2004 Aug; 13(6):573-87. PubMed ID: 15526862 [TBL] [Abstract][Full Text] [Related]
20. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content. González-Alcaraz MN; Loureiro S; van Gestel CAM Chemosphere; 2018 Apr; 197():26-32. PubMed ID: 29331715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]