These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 28500988)
21. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination. Liang P; Yuan L; Yang X; Zhou S; Huang X Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976 [TBL] [Abstract][Full Text] [Related]
22. Unravelling pH Changes in Electrochemical Desalination with Capacitive Deionization. Arulrajan AC; Dykstra JE; van der Wal A; Porada S Environ Sci Technol; 2021 Oct; 55(20):14165-14172. PubMed ID: 34586796 [TBL] [Abstract][Full Text] [Related]
23. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Li H; Gao Y; Pan L; Zhang Y; Chen Y; Sun Z Water Res; 2008 Dec; 42(20):4923-8. PubMed ID: 18929385 [TBL] [Abstract][Full Text] [Related]
24. A new standard metric describing the adsorption capacity of carbon electrode used in membrane capacitive deionization. Yoon DJ; Choi JH Water Res; 2019 Jan; 148():126-132. PubMed ID: 30359942 [TBL] [Abstract][Full Text] [Related]
25. Resistance identification and rational process design in Capacitive Deionization. Dykstra JE; Zhao R; Biesheuvel PM; van der Wal A Water Res; 2016 Jan; 88():358-370. PubMed ID: 26512814 [TBL] [Abstract][Full Text] [Related]
26. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480 [TBL] [Abstract][Full Text] [Related]
27. Brackish groundwater desalination by constant current membrane capacitive deionization (MCDI): Results of a long-term field trial in Central Australia. Zhu Y; Miller C; Lian B; Wang Y; Fletcher J; Zhou H; He Z; Lyu S; Purser M; Juracich P; Sweeney D; Waite TD Water Res; 2024 May; 254():121413. PubMed ID: 38489850 [TBL] [Abstract][Full Text] [Related]
28. Preparation of heterogeneous cation exchange membrane and its contributions in enhancing the removal of Ni Nguyen Tan T; Babel S; Bora T; Sreearunothai P; Laohhasurayotin K Chemosphere; 2024 Feb; 350():141115. PubMed ID: 38182085 [TBL] [Abstract][Full Text] [Related]
29. Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters. Tan C; He C; Tang W; Kovalsky P; Fletcher J; Waite TD Water Res; 2018 Dec; 147():276-286. PubMed ID: 30317037 [TBL] [Abstract][Full Text] [Related]
30. Optimization of constant-current operation in membrane capacitive deionization (MCDI) using variable discharging operations. He Z; Liu S; Lian B; Fletcher J; Bales C; Wang Y; Waite TD Water Res; 2021 Oct; 204():117646. PubMed ID: 34543974 [TBL] [Abstract][Full Text] [Related]
31. Concentration-Gradient Multichannel Flow-Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon Electrodes. Kim C; Lee J; Srimuk P; Aslan M; Presser V ChemSusChem; 2017 Dec; 10(24):4914-4920. PubMed ID: 28685992 [TBL] [Abstract][Full Text] [Related]
32. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Tang W; He D; Zhang C; Waite TD Water Res; 2017 Sep; 121():302-310. PubMed ID: 28558281 [TBL] [Abstract][Full Text] [Related]
33. Various cell architectures of capacitive deionization: Recent advances and future trends. Tang W; Liang J; He D; Gong J; Tang L; Liu Z; Wang D; Zeng G Water Res; 2019 Mar; 150():225-251. PubMed ID: 30528919 [TBL] [Abstract][Full Text] [Related]
34. Design and Implementation of an Electrical Characterization System for Membrane Capacitive Deionization Units for the Water Treatment. Leon FA; Ramos-Martin A; Santana D Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677539 [TBL] [Abstract][Full Text] [Related]
35. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization. Suss ME; Biesheuvel PM; Baumann TF; Stadermann M; Santiago JG Environ Sci Technol; 2014; 48(3):2008-15. PubMed ID: 24433022 [TBL] [Abstract][Full Text] [Related]
36. Na Cao J; Wang Y; Wang L; Yu F; Ma J Nano Lett; 2019 Feb; 19(2):823-828. PubMed ID: 30658040 [TBL] [Abstract][Full Text] [Related]
37. Denitrification enhancement by electro-adsorption/reduction in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) with copper electrode. Chen L; He F; Li F Chemosphere; 2022 Mar; 291(Pt 1):132732. PubMed ID: 34743794 [TBL] [Abstract][Full Text] [Related]
38. Energy recovery in membrane capacitive deionization. Długołęcki P; van der Wal A Environ Sci Technol; 2013 May; 47(9):4904-10. PubMed ID: 23477563 [TBL] [Abstract][Full Text] [Related]
39. Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes. Hemmatifar A; Oyarzun DI; Palko JW; Hawks SA; Stadermann M; Santiago JG Water Res; 2017 Oct; 122():387-397. PubMed ID: 28622631 [TBL] [Abstract][Full Text] [Related]
40. Faradaic Electrodes Open a New Era for Capacitive Deionization. Li Q; Zheng Y; Xiao D; Or T; Gao R; Li Z; Feng M; Shui L; Zhou G; Wang X; Chen Z Adv Sci (Weinh); 2020 Nov; 7(22):2002213. PubMed ID: 33240769 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]