These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 28501304)

  • 1. Speculations on salt and the genesis of arterial hypertension.
    Titze J; Luft FC
    Kidney Int; 2017 Jun; 91(6):1324-1335. PubMed ID: 28501304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension.
    Rust P; Ekmekcioglu C
    Adv Exp Med Biol; 2017; 956():61-84. PubMed ID: 27757935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the contribution of Guyton's large circulatory model to long-term control of arterial pressure.
    Montani JP; Van Vliet BN
    Exp Physiol; 2009 Apr; 94(4):382-8. PubMed ID: 19286638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing Computer Models Predicting Human Responses to a High-Salt Diet.
    Kurtz TW; DiCarlo SE; Pravenec M; Ježek F; Šilar J; Kofránek J; Morris RC
    Hypertension; 2018 Dec; 72(6):1407-1416. PubMed ID: 30571226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the kidney in the pathogenesis of hypertension: time for a neo-Guytonian paradigm or a paradigm shift?
    Evans RG; Bie P
    Am J Physiol Regul Integr Comp Physiol; 2016 Feb; 310(3):R217-29. PubMed ID: 26582636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling.
    Clemmer JS; Pruett WA; Coleman TG; Hall JE; Hester RL
    Am J Physiol Regul Integr Comp Physiol; 2017 Apr; 312(4):R451-R466. PubMed ID: 27974315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension.
    Kurtz TW; DiCarlo SE; Pravenec M; Morris RC
    Curr Opin Nephrol Hypertens; 2018 Mar; 27(2):83-92. PubMed ID: 29278541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased Dietary Salt Changes Baroreceptor Sensitivity and Intrarenal Renin-Angiotensin System in Goldblatt Hypertension.
    Shimoura CG; Lincevicius GS; Nishi EE; Girardi AC; Simon KA; Bergamaschi CT; Campos RR
    Am J Hypertens; 2017 Jan; 30(1):28-36. PubMed ID: 27629265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kidney, hypertension, and obesity.
    Hall JE
    Hypertension; 2003 Mar; 41(3 Pt 2):625-33. PubMed ID: 12623970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Salt-sensitive hypertension].
    Rodríguez Castellanos FE
    Arch Cardiol Mex; 2006; 76 Suppl 2():S161-3. PubMed ID: 17017093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach.
    Averina VA; Othmer HG; Fink GD; Osborn JW
    J Physiol; 2012 Dec; 590(23):5975-92. PubMed ID: 22890716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension.
    Kawarazaki W; Fujita T
    Clin Exp Pharmacol Physiol; 2013 Dec; 40(12):929-36. PubMed ID: 24111570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Salt, renal function and high blood pressure--reflections on a current issue].
    Aurell M
    Lakartidningen; 2002 Nov; 99(47):4736-40. PubMed ID: 12523049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of the kidneys and fluid volumes in arterial pressure regulation and hypertension.
    Guyton AC
    Chin J Physiol; 1989; 32(2):49-57. PubMed ID: 2700554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Two Faces of Low-Salt Intake.
    Braam B; Huang X; Cupples WA; Hamza SM
    Curr Hypertens Rep; 2017 Jun; 19(6):49. PubMed ID: 28501983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary salt intake, blood pressure and the kidney in hypertensive patients with non-insulin dependent diabetes mellitus.
    Campese VM; Wurgaft A; Safa M; Bianchi S
    J Nephrol; 1998; 11(6):289-95. PubMed ID: 10048494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular-based mechanisms of Mendelian forms of salt-dependent hypertension: questioning the prevailing theory.
    Kurtz TW; Dominiczak AF; DiCarlo SE; Pravenec M; Morris RC
    Hypertension; 2015 May; 65(5):932-41. PubMed ID: 25753977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal arteriolar injury by salt intake contributes to salt memory for the development of hypertension.
    Oguchi H; Sasamura H; Shinoda K; Morita S; Kono H; Nakagawa K; Ishiguro K; Hayashi K; Nakamura M; Azegami T; Oya M; Itoh H
    Hypertension; 2014 Oct; 64(4):784-91. PubMed ID: 24980670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension.
    Kurtz TW; DiCarlo SE; Pravenec M; Schmidlin O; Tanaka M; Morris RC
    Kidney Int; 2016 Nov; 90(5):965-973. PubMed ID: 27546606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominant role of the kidneys and accessory role of whole-body autoregulation in the pathogenesis of hypertension.
    Guyton AC
    Am J Hypertens; 1989 Jul; 2(7):575-85. PubMed ID: 2667575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.