These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

648 related articles for article (PubMed ID: 28501710)

  • 1. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair.
    Gao C; Feng P; Peng S; Shuai C
    Acta Biomater; 2017 Oct; 61():1-20. PubMed ID: 28501710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current progress in bioactive ceramic scaffolds for bone repair and regeneration.
    Gao C; Deng Y; Feng P; Mao Z; Li P; Yang B; Deng J; Cao Y; Shuai C; Peng S
    Int J Mol Sci; 2014 Mar; 15(3):4714-32. PubMed ID: 24646912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges.
    Kaur G; Kumar V; Baino F; Mauro JC; Pickrell G; Evans I; Bretcanu O
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109895. PubMed ID: 31500047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotubes reinforced composites for biomedical applications.
    Wang W; Zhu Y; Liao S; Li J
    Biomed Res Int; 2014; 2014():518609. PubMed ID: 24707488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect.
    Jyoti J; Kiran A; Sandhu M; Kumar A; Singh BP; Kumar N
    J Mech Behav Biomed Mater; 2021 May; 117():104376. PubMed ID: 33618240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boron nitride nanomaterials: biocompatibility and bio-applications.
    Merlo A; Mokkapati VRSS; Pandit S; Mijakovic I
    Biomater Sci; 2018 Aug; 6(9):2298-2311. PubMed ID: 30059084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites.
    Ahmad I; Yazdani B; Zhu Y
    Nanomaterials (Basel); 2015 Jan; 5(1):90-114. PubMed ID: 28347001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites.
    Zhan GD; Kuntz JD; Wan J; Mukherjee AK
    Nat Mater; 2003 Jan; 2(1):38-42. PubMed ID: 12652671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube reinforced ceramic composites and their performance.
    Arsecularatne JA; Zhang LC
    Recent Pat Nanotechnol; 2007; 1(3):176-85. PubMed ID: 19076031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes.
    Ogihara N; Usui Y; Aoki K; Shimizu M; Narita N; Hara K; Nakamura K; Ishigaki N; Takanashi S; Okamoto M; Kato H; Haniu H; Ogiwara N; Nakayama N; Taruta S; Saito N
    Nanomedicine (Lond); 2012 Jul; 7(7):981-93. PubMed ID: 22401267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites.
    Wang X; Padture NP; Tanaka H
    Nat Mater; 2004 Aug; 3(8):539-44. PubMed ID: 15258573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, Properties, and Application of Graphene-Based Materials in Tissue Engineering Scaffolds.
    Xue W; Du J; Li Q; Wang Y; Lu Y; Fan J; Yu S; Yang Y
    Tissue Eng Part B Rev; 2022 Oct; 28(5):1121-1136. PubMed ID: 34751592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive glasses and glass-ceramics.
    Rawlings RD
    Clin Mater; 1993; 14(2):155-79. PubMed ID: 10146444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive ceramic-based materials: beneficial properties and potential applications in dental repair and regeneration.
    Wang J; Zhang L; Wang K
    Regen Med; 2024 May; 19(5):257-278. PubMed ID: 39118532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties.
    Yamamoto G; Omori M; Hashida T; Kimura H
    Nanotechnology; 2008 Aug; 19(31):315708. PubMed ID: 21828800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive ceramic-reinforced composites for bone augmentation.
    Tanner KE
    J R Soc Interface; 2010 Oct; 7 Suppl 5(Suppl 5):S541-57. PubMed ID: 20591846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of needle-like nano-HA and HA/MWNT composites.
    Meng YH; Tang CY; Tsui CP; Chen DZ
    J Mater Sci Mater Med; 2008 Jan; 19(1):75-81. PubMed ID: 17577639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using graphene networks to build bioinspired self-monitoring ceramics.
    Picot OT; Rocha VG; Ferraro C; Ni N; D'Elia E; Meille S; Chevalier J; Saunders T; Peijs T; Reece MJ; Saiz E
    Nat Commun; 2017 Feb; 8():14425. PubMed ID: 28181518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites.
    Mehrali M; Moghaddam E; Shirazi SF; Baradaran S; Mehrali M; Latibari ST; Metselaar HS; Kadri NA; Zandi K; Osman NA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3947-62. PubMed ID: 24588873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.