These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28501744)

  • 1. Strategy for improved NH
    Brackmann C; Zhou B; Samuelsson P; Alekseev VA; Konnov AA; Li Z; Aldén M
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():235-242. PubMed ID: 28501744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames.
    Leffler T; Brackmann C; Aldén M; Li Z
    Appl Spectrosc; 2017 Jun; 71(6):1289-1299. PubMed ID: 28534679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser-induced plasma spectroscopy for combustion diagnostics in premixed ammonia/air flames.
    Zhang D; Gao Q; Li B; Liu J; Tian Y; Li Z
    Appl Opt; 2019 Oct; 58(28):7810-7816. PubMed ID: 31674464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methyl Radical Imaging in Methane-Air Flames Using Laser Photofragmentation-Induced Fluorescence.
    Li B; Li X; Yao M; Li Z
    Appl Spectrosc; 2015 Oct; 69(10):1152-6. PubMed ID: 26449808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-induced fluorescence detection of hot molecular oxygen in flames using an alexandrite laser.
    Kiefer J; Zhou B; Zetterberg J; Li Z; Alden M
    Appl Spectrosc; 2014; 68(11):1266-73. PubMed ID: 25279538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry.
    Lee T; Bessler WG; Kronemayer H; Schulz C; Jeffries JB
    Appl Opt; 2005 Nov; 44(31):6718-28. PubMed ID: 16270561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0,0) excitation.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2002 Jun; 41(18):3547-57. PubMed ID: 12078680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames.
    Kulatilaka WD; Patterson BD; Frank JH; Settersten TB
    Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A-X excitation schemes.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2003 Aug; 42(24):4922-36. PubMed ID: 12952340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Line Laser-Induced Fluorescence Imaging of Vibrational Temperatures in a NO-Seeded Flame.
    Bessler WG; Hildenbrand F; Schulz C
    Appl Opt; 2001 Feb; 40(6):748-56. PubMed ID: 18357054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CH and NO planar laser-induced fluorescence and Rayleigh-scattering in turbulent flames using a multimode optical parametric oscillator.
    Miller JD; Tröger JW; Engel SR; Seeger T; Leipertz A; Meyer TR
    Appl Opt; 2021 Jan; 60(1):98-108. PubMed ID: 33362084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames.
    Thomsen DD; Kuligowski FF; Laurendeau NM
    Appl Opt; 1997 May; 36(15):3244-52. PubMed ID: 18253332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A-X(0,1) excitation.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2003 Apr; 42(12):2031-42. PubMed ID: 12716143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation.
    Brackmann C; Nygren J; Bai X; Li Z; Bladh H; Axelsson B; Denbratt I; Koopmans L; Bengtsson PE; Aldén M
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Dec; 59(14):3347-56. PubMed ID: 14607232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the rate constants for the radical-radical reactions NH2(X(2)B1) + NH(X(3)Sigma-) and NH2(X(2)B1) + H((2)S) at 293 K.
    Bahng MK; Macdonald RG
    J Phys Chem A; 2009 Mar; 113(11):2415-23. PubMed ID: 19222176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames.
    Frank JH; Chen X; Patterson BD; Settersten TB
    Appl Opt; 2004 Apr; 43(12):2588-97. PubMed ID: 15119630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering.
    Egermann J; Seeger T; Leipertz A
    Appl Opt; 2004 Oct; 43(29):5564-74. PubMed ID: 15508615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pump-probe strategy for instantaneous 2D detection of CH
    Han L; Gao Q; Li B; Li Z
    Appl Opt; 2022 Sep; 61(25):7361-7365. PubMed ID: 36256035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers.
    Kulatilaka WD; Hsu PS; Gord JR; Roy S
    Opt Lett; 2011 May; 36(10):1818-20. PubMed ID: 21593901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser absorption spectroscopy diagnostics of nitrogen-containing radicals in low-pressure hydrocarbon flames doped with nitrogen oxides.
    Lozovsky VA; Rahinov I; Ditzian N; Cheskis S
    Faraday Discuss; 2001; (119):321-35; discussion 353-70. PubMed ID: 11877999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.