These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 2850179)
1. Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Crompton M; Costi A Eur J Biochem; 1988 Dec; 178(2):489-501. PubMed ID: 2850179 [TBL] [Abstract][Full Text] [Related]
2. A heart mitochondrial Ca2(+)-dependent pore of possible relevance to re-perfusion-induced injury. Evidence that ADP facilitates pore interconversion between the closed and open states. Crompton M; Costi A Biochem J; 1990 Feb; 266(1):33-9. PubMed ID: 2106875 [TBL] [Abstract][Full Text] [Related]
3. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Crompton M; Ellinger H; Costi A Biochem J; 1988 Oct; 255(1):357-60. PubMed ID: 3196322 [TBL] [Abstract][Full Text] [Related]
4. The reversible Ca2+-induced permeabilization of rat liver mitochondria. Al-Nasser I; Crompton M Biochem J; 1986 Oct; 239(1):19-29. PubMed ID: 3099778 [TBL] [Abstract][Full Text] [Related]
5. Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Crompton M; Costi A; Hayat L Biochem J; 1987 Aug; 245(3):915-8. PubMed ID: 3117053 [TBL] [Abstract][Full Text] [Related]
6. The entrapment of the Ca2+ indicator arsenazo III in the matrix space of rat liver mitochondria by permeabilization and resealing. Na+-dependent and -independent effluxes of Ca2+ in arsenazo III-loaded mitochondria. Al-Nasser I; Crompton M Biochem J; 1986 Oct; 239(1):31-40. PubMed ID: 3800984 [TBL] [Abstract][Full Text] [Related]
7. Ca2+ acting at the external side of the inner mitochondrial membrane can stimulate mitochondrial permeability transition induced by phenylarsine oxide. Kowaltowski AJ; Castilho RF Biochim Biophys Acta; 1997 Dec; 1322(2-3):221-9. PubMed ID: 9452768 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Halestrap AP; Davidson AM Biochem J; 1990 May; 268(1):153-60. PubMed ID: 2160810 [TBL] [Abstract][Full Text] [Related]
9. The effects of Mg2+ and adenine nucleotides on the sensitivity of the heart mitochondrial Na+-Ca2+ carrier to extramitochondrial Ca2+. A study using arsenazo III-loaded mitochondria. Hayat LH; Crompton M Biochem J; 1987 Jun; 244(3):533-8. PubMed ID: 3446174 [TBL] [Abstract][Full Text] [Related]
10. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes. Rizzuto R; Pitton G; Azzone GF Eur J Biochem; 1987 Jan; 162(2):239-49. PubMed ID: 3803384 [TBL] [Abstract][Full Text] [Related]
11. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength. Bradshaw PC; Pfeiffer DR BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565 [TBL] [Abstract][Full Text] [Related]
12. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. Kowaltowski AJ; Castilho RF; Vercesi AE FEBS Lett; 1996 Jan; 378(2):150-2. PubMed ID: 8549822 [TBL] [Abstract][Full Text] [Related]
13. Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation. Kowaltowski AJ; Castilho RF; Grijalba MT; Bechara EJ; Vercesi AE J Biol Chem; 1996 Feb; 271(6):2929-34. PubMed ID: 8621682 [TBL] [Abstract][Full Text] [Related]
14. Effects of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate. Hansford RG; Castro F Biochem J; 1981 Sep; 198(3):525-33. PubMed ID: 6275851 [TBL] [Abstract][Full Text] [Related]
15. Kinetic analysis of the mitochondrial permeability transition. Massari S J Biol Chem; 1996 Dec; 271(50):31942-8. PubMed ID: 8943240 [TBL] [Abstract][Full Text] [Related]
16. The intramitochondrial volume measured using sucrose as an extramitochondrial marker overestimates the true matrix volume determined with mannitol. Halestrap AP; Quinlan PT Biochem J; 1983 Aug; 214(2):387-93. PubMed ID: 6412699 [TBL] [Abstract][Full Text] [Related]
17. Calcium transport and inner mitochondrial membrane damage in renal cortical mitochondria. Weinberg JM; Humes HD Am J Physiol; 1985 Jun; 248(6 Pt 2):F876-89. PubMed ID: 4003558 [TBL] [Abstract][Full Text] [Related]
18. The permeability transition in heart mitochondria is regulated synergistically by ADP and cyclosporin A. Novgorodov SA; Gudz TI; Milgrom YM; Brierley GP J Biol Chem; 1992 Aug; 267(23):16274-82. PubMed ID: 1644813 [TBL] [Abstract][Full Text] [Related]
19. Involvement of the ADP/ATP carrier in permeabilization processes of the inner mitochondrial membrane. de Macedo DV; Nepomuceno ME; Pereira-da-Silva L Eur J Biochem; 1993 Aug; 215(3):595-600. PubMed ID: 8354266 [TBL] [Abstract][Full Text] [Related]