These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 28502179)
1. Self-Propelled Motion of Monodisperse Underwater Oil Droplets Formed by a Microfluidic Device. Ueno N; Banno T; Asami A; Kazayama Y; Morimoto Y; Osaki T; Takeuchi S; Kitahata H; Toyota T Langmuir; 2017 Jun; 33(22):5393-5397. PubMed ID: 28502179 [TBL] [Abstract][Full Text] [Related]
2. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant. Miura S; Banno T; Tonooka T; Osaki T; Takeuchi S; Toyota T Langmuir; 2014 Jul; 30(27):7977-85. PubMed ID: 24934718 [TBL] [Abstract][Full Text] [Related]
3. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding. Banno T; Toyota T Langmuir; 2015 Jun; 31(25):6943-7. PubMed ID: 26073277 [TBL] [Abstract][Full Text] [Related]
5. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages. Banno T; Kuroha R; Toyota T Langmuir; 2012 Jan; 28(2):1190-5. PubMed ID: 22149384 [TBL] [Abstract][Full Text] [Related]
6. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet. Suematsu NJ; Saikusa K; Nagata T; Izumi S Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577 [TBL] [Abstract][Full Text] [Related]
7. Directional and velocity control of active droplets using a rigid-frame. Yamada M; Shigemune H; Maeda S; Sawada H RSC Adv; 2019 Dec; 9(69):40523-40530. PubMed ID: 35542662 [TBL] [Abstract][Full Text] [Related]
8. pH-dependent motion of self-propelled droplets due to Marangoni effect at neutral pH. Ban T; Yamagami T; Nakata H; Okano Y Langmuir; 2013 Feb; 29(8):2554-61. PubMed ID: 23369012 [TBL] [Abstract][Full Text] [Related]
10. Lattice Boltzmann study of chemically-driven self-propelled droplets. Fadda F; Gonnella G; Lamura A; Tiribocchi A Eur Phys J E Soft Matter; 2017 Dec; 40(12):112. PubMed ID: 29256179 [TBL] [Abstract][Full Text] [Related]
11. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants. Kasuo Y; Kitahata H; Koyano Y; Takinoue M; Asakura K; Banno T Langmuir; 2019 Oct; 35(41):13351-13355. PubMed ID: 31550892 [TBL] [Abstract][Full Text] [Related]
12. Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device. Ten Klooster S; Sahin S; Schroën K Sci Rep; 2019 May; 9(1):7820. PubMed ID: 31127142 [TBL] [Abstract][Full Text] [Related]
13. Kinetic monitoring of molecular interactions during surfactant-driven self-propelled droplet motion by high spatial resolution waveguide sensing. Farkas E; Dóra Kovács K; Szekacs I; Peter B; Lagzi I; Kitahata H; Suematsu NJ; Horvath R J Colloid Interface Sci; 2025 Jan; 677(Pt B):352-364. PubMed ID: 39151228 [TBL] [Abstract][Full Text] [Related]
14. Spontaneous change in trajectory patterns of a self-propelled oil droplet at the air-surfactant solution interface. Tanaka S; Sogabe Y; Nakata S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032406. PubMed ID: 25871122 [TBL] [Abstract][Full Text] [Related]
15. Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions. Suga M; Suda S; Ichikawa M; Kimura Y Phys Rev E; 2018 Jun; 97(6-1):062703. PubMed ID: 30011466 [TBL] [Abstract][Full Text] [Related]
16. Analysis of different self-propulsion types of oil droplets based on electrostatic interaction effects. Noguchi M; Yamada M; Sawada H RSC Adv; 2022 Jun; 12(29):18354-18362. PubMed ID: 35799924 [TBL] [Abstract][Full Text] [Related]
17. Monodisperse Micro-Oil Droplets Stabilized by Polymerizable Phospholipid Coatings as Potential Drug Carriers. Park Y; Pham TA; Beigie C; Cabodi M; Cleveland RO; Nagy JO; Wong JY Langmuir; 2015 Sep; 31(36):9762-70. PubMed ID: 26303989 [TBL] [Abstract][Full Text] [Related]
18. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Okushima S; Nisisako T; Torii T; Higuchi T Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471 [TBL] [Abstract][Full Text] [Related]
19. Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions. Wuzhang J; Song Y; Sun R; Pan X; Li D Electrophoresis; 2015 Oct; 36(19):2489-97. PubMed ID: 26140616 [TBL] [Abstract][Full Text] [Related]
20. Self-propulsion of aluminum particle-coated Janus droplet in alkaline solution. Li M; Li D J Colloid Interface Sci; 2018 Dec; 532():657-665. PubMed ID: 30121518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]