BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 28502806)

  • 1. Treadmill exercise delays the onset of non-motor behaviors and striatal pathology in the CAG
    Stefanko DP; Shah VD; Yamasaki WK; Petzinger GM; Jakowec MW
    Neurobiol Dis; 2017 Sep; 105():15-32. PubMed ID: 28502806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations of striatal indirect pathway neurons precede motor deficits in two mouse models of Huntington's disease.
    Sebastianutto I; Cenci MA; Fieblinger T
    Neurobiol Dis; 2017 Sep; 105():117-131. PubMed ID: 28578004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of functional brain reorganization on the basis of blood flow changes in the CAG140 knock-in mouse model of Huntington's disease.
    Wang Z; Stefanko DP; Guo Y; Toy WA; Petzinger GM; Jakowec MW; Holschneider DP
    Neuroreport; 2016 Jun; 27(9):632-9. PubMed ID: 27082842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treadmill exercise rescues mitochondrial function and motor behavior in the CAG
    Caldwell CC; Petzinger GM; Jakowec MW; Cadenas E
    Chem Biol Interact; 2020 Jan; 315():108907. PubMed ID: 31778667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Striatal atrophy and dendritic alterations in a knock-in mouse model of Huntington's disease.
    Lerner RP; Trejo Martinez Ldel C; Zhu C; Chesselet MF; Hickey MA
    Brain Res Bull; 2012 Apr; 87(6):571-8. PubMed ID: 22326483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype.
    Wegrzynowicz M; Bichell TJ; Soares BD; Loth MK; McGlothan JS; Mori S; Alikhan FS; Hua K; Coughlin JM; Holt HK; Jetter CS; Pomper MG; Osmand AP; Guilarte TR; Bowman AB
    J Huntingtons Dis; 2015; 4(1):17-36. PubMed ID: 26333255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular Analysis of Silencing the Huntington's Disease Gene Using AAV9 Mediated Delivery of Artificial Micro RNA into the Striatum of Q140/Q140 Mice.
    Keeler AM; Sapp E; Chase K; Sottosanti E; Danielson E; Pfister E; Stoica L; DiFiglia M; Aronin N; Sena-Esteves M
    J Huntingtons Dis; 2016 Oct; 5(3):239-248. PubMed ID: 27689620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the HdhQ150/Q150 Mouse Model of Huntington's Disease.
    Rattray I; Smith EJ; Crum WR; Walker TA; Gale R; Bates GP; Modo M
    PLoS One; 2017; 12(1):e0168556. PubMed ID: 28099507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex differences in behavior and striatal ascorbate release in the 140 CAG knock-in mouse model of Huntington's disease.
    Dorner JL; Miller BR; Barton SJ; Brock TJ; Rebec GV
    Behav Brain Res; 2007 Mar; 178(1):90-7. PubMed ID: 17239451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A selective inhibitor of histone deacetylase 3 prevents cognitive deficits and suppresses striatal CAG repeat expansions in Huntington's disease mice.
    Suelves N; Kirkham-McCarthy L; Lahue RS; Ginés S
    Sci Rep; 2017 Jul; 7(1):6082. PubMed ID: 28729730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington's disease transgenic mice.
    Pang TYC; Stam NC; Nithianantharajah J; Howard ML; Hannan AJ
    Neuroscience; 2006 Aug; 141(2):569-584. PubMed ID: 16716524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington's disease.
    Luis-Ravelo D; Estévez-Silva H; Barroso-Chinea P; Afonso-Oramas D; Salas-Hernández J; Rodríguez-Núñez J; Acevedo-Arozena A; Marcellino D; González-Hernández T
    Exp Neurol; 2018 Jan; 299(Pt A):137-147. PubMed ID: 29056363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington's disease.
    Van Raamsdonk JM; Pearson J; Slow EJ; Hossain SM; Leavitt BR; Hayden MR
    J Neurosci; 2005 Apr; 25(16):4169-80. PubMed ID: 15843620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain urea increase is an early Huntington's disease pathogenic event observed in a prodromal transgenic sheep model and HD cases.
    Handley RR; Reid SJ; Brauning R; Maclean P; Mears ER; Fourie I; Patassini S; Cooper GJS; Rudiger SR; McLaughlan CJ; Verma PJ; Gusella JF; MacDonald ME; Waldvogel HJ; Bawden CS; Faull RLM; Snell RG
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):E11293-E11302. PubMed ID: 29229845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic cannabinoid receptor stimulation selectively prevents motor impairments in a mouse model of Huntington's disease.
    Pietropaolo S; Bellocchio L; Ruiz-Calvo A; Cabanas M; Du Z; Guzmán M; Garret M; Cho YH
    Neuropharmacology; 2015 Feb; 89():368-74. PubMed ID: 25123645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice.
    Vodicka P; Chase K; Iuliano M; Valentine DT; Sapp E; Lu B; Kegel-Gleason KB; Sena-Esteves M; Aronin N; DiFiglia M
    J Huntingtons Dis; 2016 Jun; 5(2):163-74. PubMed ID: 27314618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of huntingtin function slows synaptic vesicle endocytosis in striatal neurons from the htt
    McAdam RL; Morton A; Gordon SL; Alterman JF; Khvorova A; Cousin MA; Smillie KJ
    Neurobiol Dis; 2020 Feb; 134():104637. PubMed ID: 31614197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Striatal expression of a calmodulin fragment improved motor function, weight loss, and neuropathology in the R6/2 mouse model of Huntington's disease.
    Dai Y; Dudek NL; Li Q; Fowler SC; Muma NA
    J Neurosci; 2009 Sep; 29(37):11550-9. PubMed ID: 19759302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental enrichment rescues protein deficits in a mouse model of Huntington's disease, indicating a possible disease mechanism.
    Spires TL; Grote HE; Varshney NK; Cordery PM; van Dellen A; Blakemore C; Hannan AJ
    J Neurosci; 2004 Mar; 24(9):2270-6. PubMed ID: 14999077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss-of-Huntingtin in Medial and Lateral Ganglionic Lineages Differentially Disrupts Regional Interneuron and Projection Neuron Subtypes and Promotes Huntington's Disease-Associated Behavioral, Cellular, and Pathological Hallmarks.
    Mehler MF; Petronglo JR; Arteaga-Bracho EE; Gulinello ME; Winchester ML; Pichamoorthy N; Young SK; DeJesus CD; Ishtiaq H; Gokhan S; Molero AE
    J Neurosci; 2019 Mar; 39(10):1892-1909. PubMed ID: 30626701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.