These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 28503140)

  • 1. Gravity as a Strong Prior: Implications for Perception and Action.
    Jörges B; López-Moliner J
    Front Hum Neurosci; 2017; 11():203. PubMed ID: 28503140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of visual cues in gravity judgements on parabolic motion.
    Jörges B; Hagenfeld L; López-Moliner J
    Vision Res; 2018 Aug; 149():47-58. PubMed ID: 29913247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visuomotor Interactions and Perceptual Judgments in Virtual Reality Simulating Different Levels of Gravity.
    La Scaleia B; Ceccarelli F; Lacquaniti F; Zago M
    Front Bioeng Biotechnol; 2020; 8():76. PubMed ID: 32133351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining mean and standard deviation of the strong gravity prior through simulations.
    Jörges B; López-Moliner J
    PLoS One; 2020; 15(8):e0236732. PubMed ID: 32813686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Getting ready for Mars: How the brain perceives new simulated gravitational environments.
    Torok A; Gallagher M; Lasbareilles C; Ferrè ER
    Q J Exp Psychol (Hove); 2019 Sep; 72(9):2342-2349. PubMed ID: 30852941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of long-term exposure to microgravity on the perception of upright.
    Harris LR; Jenkin M; Jenkin H; Zacher JE; Dyde RT
    NPJ Microgravity; 2017; 3():3. PubMed ID: 28649625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How about running on Mars? Influence of sensorimotor coherence on running and spatial perception in simulated reduced gravity.
    Keime M; Chomienne L; Goulon C; Sainton P; Lapole T; Casanova R; Bossard M; Nicol C; Martha C; Bolmont B; Hays A; Vercruyssen F; Chavet P; Bringoux L
    Front Physiol; 2023; 14():1201253. PubMed ID: 37601641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real and visually-induced body inclination differently affect the perception of object stability.
    Laboissière R; Barraud PA; Cian C
    PLoS One; 2017; 12(10):e0186431. PubMed ID: 29036180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seeing Gravity: Gait Adaptations to Visual and Physical Inclines - A Virtual Reality Study.
    Cano Porras D; Zeilig G; Doniger GM; Bahat Y; Inzelberg R; Plotnik M
    Front Neurosci; 2019; 13():1308. PubMed ID: 32038123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual upright: the relative effectiveness of dynamic and static images under different gravity States.
    Jenkin MR; Dyde RT; Jenkin HL; Zacher JE; Harris LR
    Seeing Perceiving; 2011; 24(1):53-64. PubMed ID: 21406155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multisensory determinants of orientation perception: task-specific sex differences.
    Barnett-Cowan M; Dyde RT; Thompson C; Harris LR
    Eur J Neurosci; 2010 May; 31(10):1899-907. PubMed ID: 20584195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal reference frames for representation and storage of visual information: the role of gravity.
    McIntyre J; Lipshits M; Zaoui M; Berthoz A; Gurfinkel V
    Acta Astronaut; 2001; 49(3-10):111-21. PubMed ID: 11669099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of long-term exposure to microgravity and body orientation relative to gravity on perceived traveled distance.
    Jörges B; Bury N; McManus M; Bansal A; Allison RS; Jenkin M; Harris LR
    NPJ Microgravity; 2024 Mar; 10(1):28. PubMed ID: 38480736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multisensory determinants of orientation perception in Parkinson's disease.
    Barnett-Cowan M; Dyde RT; Fox SH; Moro E; Hutchison WD; Harris LR
    Neuroscience; 2010 Jun; 167(4):1138-50. PubMed ID: 20206672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates.
    Van Beuzekom AD; Van Gisbergen JA
    J Neurophysiol; 2000 Jul; 84(1):11-27. PubMed ID: 10899179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravity estimation and verticality perception.
    Dakin CJ; Rosenberg A
    Handb Clin Neurol; 2018; 159():43-59. PubMed ID: 30482332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The unassisted visual system on earth and in space.
    Harris LR; Jenkin M; Jenkin H; Dyde R; Zacher J; Allison RS
    J Vestib Res; 2010; 20(1):25-30. PubMed ID: 20555164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?
    Goulard R; Vercher JL; Viollet S
    J Exp Biol; 2016 Aug; 219(Pt 16):2497-503. PubMed ID: 27535987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving perceptual conflicts: the cognitive mechanism of spatial orientation.
    Friederici AD; Levelt WJ
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A164-9. PubMed ID: 3675485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gravity in the Brain as a Reference for Space and Time Perception.
    Lacquaniti F; Bosco G; Gravano S; Indovina I; La Scaleia B; Maffei V; Zago M
    Multisens Res; 2015; 28(5-6):397-426. PubMed ID: 26595949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.