These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28503246)

  • 1. Particle concentrating and sorting under a rotating electric field by direct optical-liquid heating in a microfluidics chip.
    Chen YL; Jiang HR
    Biomicrofluidics; 2017 May; 11(3):034102. PubMed ID: 28503246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically Enhanced Self-Thermophoresis of Laser-Heated Janus Particles under a Rotating Electric Field.
    Chen YL; Yang CX; Jiang HR
    Sci Rep; 2018 Apr; 8(1):5945. PubMed ID: 29654240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations.
    Calero V; García-Sánchez P; Ramos A; Morgan H
    J Chromatogr A; 2020 Jul; 1623():461151. PubMed ID: 32505271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects.
    Xuan X
    Electrophoresis; 2022 Jan; 43(1-2):167-189. PubMed ID: 33991344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and experimental analysis of negative dielectrophoresis-induced particle trajectories.
    Luna R; Heineck DP; Bucher E; Heiser L; Ibsen SD
    Electrophoresis; 2022 Jun; 43(12):1366-1377. PubMed ID: 35377504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joule heating-induced particle manipulation on a microfluidic chip.
    Kunti G; Dhar J; Bhattacharya A; Chakraborty S
    Biomicrofluidics; 2019 Jan; 13(1):014113. PubMed ID: 30867883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics.
    Perez-Gonzalez VH
    Electrophoresis; 2021 Dec; 42(23):2445-2464. PubMed ID: 34081787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2018 Oct; 90(19):11461-11469. PubMed ID: 30192521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Concentration of Nanoparticles with DC Dielectrophoresis in Focused Electric Fields.
    Chen D; Du H; Tay C
    Nanoscale Res Lett; 2009 Oct; 5(1):55-60. PubMed ID: 20652137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable rotating behavior of individual dielectric microrod in a rotating electric field.
    Liu W; Ren Y; Tao Y; Li Y; Chen X
    Electrophoresis; 2017 Jun; 38(11):1427-1433. PubMed ID: 28213894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Particle Trapping, Switching, and Sorting Utilizing a Combination of Dielectrophoresis and Alternating Current Electrothermal Flow.
    Sun H; Ren Y; Hou L; Tao Y; Liu W; Jiang T; Jiang H
    Anal Chem; 2019 May; 91(9):5729-5738. PubMed ID: 30938976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative dielectrophoretic capture of bacterial spores in food matrices.
    Koklu M; Park S; Pillai SD; Beskok A
    Biomicrofluidics; 2010 Aug; 4(3):. PubMed ID: 20838479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.
    Walid Rezanoor M; Dutta P
    Biomicrofluidics; 2016 Mar; 10(2):024101. PubMed ID: 27014394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling law analysis of electrohydrodynamics and dielectrophoresis for isomotive dielectrophoresis microfluidic devices.
    Rashed MZ; Green NG; Williams SJ
    Electrophoresis; 2020 Jan; 41(1-2):148-155. PubMed ID: 31677287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.
    Ndukaife JC; Mishra A; Guler U; Nnanna AG; Wereley ST; Boltasseva A
    ACS Nano; 2014 Sep; 8(9):9035-43. PubMed ID: 25144369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidirectional and Stepwise Rotation of Cells and Particles Using Induced Charge Electroosmosis Vortexes.
    Wang S; Zhang Z; Ma X; Yue Y; Li K; Meng Y; Wu Y
    Biosensors (Basel); 2024 Feb; 14(3):. PubMed ID: 38534219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental examination of particle-particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains.
    Moncada-Hernandez H; Nagler E; Minerick AR
    Electrophoresis; 2014 Jul; 35(12-13):1803-13. PubMed ID: 24658965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.