BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2850334)

  • 1. The role of phosphoinositide metabolism in signal transduction in secretory cells.
    Putney JW
    J Exp Biol; 1988 Sep; 139():135-50. PubMed ID: 2850334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inositol phosphate formation and its relationship to calcium signaling.
    Hughes AR; Putney JW
    Environ Health Perspect; 1990 Mar; 84():141-7. PubMed ID: 2190808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inositol phosphate metabolism and signal transduction.
    Hughes AR; Horstman DA; Takemura H; Putney JW
    Am Rev Respir Dis; 1990 Mar; 141(3 Pt 2):S115-8. PubMed ID: 2155557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do inositol phosphates regulate calcium signaling?
    Putney JW; Takemura H; Hughes AR; Horstman DA; Thastrup O
    FASEB J; 1989 Jun; 3(8):1899-905. PubMed ID: 2542110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hormone effects on cellular Ca2+ fluxes.
    Williamson JR; Monck JR
    Annu Rev Physiol; 1989; 51():107-24. PubMed ID: 2496641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism and functions of inositol phosphates.
    Hughes AR; Putney JW
    Biofactors; 1988 Jul; 1(2):117-21. PubMed ID: 3076438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histamine-H1-receptor-mediated phosphoinositide hydrolysis, Ca2+ signalling and membrane-potential oscillations in human HeLa carcinoma cells.
    Tilly BC; Tertoolen LG; Lambrechts AC; Remorie R; de Laat SW; Moolenaar WH
    Biochem J; 1990 Feb; 266(1):235-43. PubMed ID: 2155607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of glomerulosa cell function by angiotensin II: transduction by G-proteins and inositol polyphosphates.
    Catt KJ; Balla T; Baukal AJ; Hausdorff WP; Aguilera G
    Clin Exp Pharmacol Physiol; 1988 Jul; 15(7):501-15. PubMed ID: 3152162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms involved in receptor-mediated changes of intracellular Ca2+ in liver.
    Williamson JR; Hansen CA; Verhoeven A; Coll KE; Johanson R; Williamson MT; Filburn C
    Soc Gen Physiol Ser; 1987; 42():93-116. PubMed ID: 2850613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of histamine- and UTP-induced increases in Ins(1,4,5)P3, Ins (1,3,4,5)P4 and Ca2+ by cyclic AMP in DDT1 MF-2 cells.
    Sipma H; Duin M; Hoiting B; den Hertog A; Nelemans A
    Br J Pharmacol; 1995 Jan; 114(2):383-90. PubMed ID: 7881738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing inositol lipid hydrolysis, Ins(1,4,5)P3 receptor availability, or Ca2+ gradients lengthens the duration of the cell cycle in Xenopus laevis blastomeres.
    Han JK; Fukami K; Nuccitelli R
    J Cell Biol; 1992 Jan; 116(1):147-56. PubMed ID: 1309810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II and guanine nucleotides stimulate formation of inositol 1,4,5-trisphosphate and its metabolites in permeabilized adrenal glomerulosa cells.
    Baukal AJ; Balla T; Hunyady L; Hausdorff W; Guillemette G; Catt KJ
    J Biol Chem; 1988 May; 263(13):6087-92. PubMed ID: 3283118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of the phospholipase C pathway by ATP is mediated exclusively through nucleotide type P2-purinoceptors in C2C12 myotubes.
    Henning RH; Duin M; den Hertog A; Nelemans A
    Br J Pharmacol; 1993 Oct; 110(2):747-52. PubMed ID: 8242247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of phosphoinositide metabolism in Ca2+ signalling of skeletal muscle cells.
    Foster PS
    Int J Biochem; 1994 Apr; 26(4):449-68. PubMed ID: 8013729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opioid mu, delta, and kappa receptor-induced activation of phospholipase C-beta 3 and inhibition of adenylyl cyclase is mediated by Gi2 and G(o) in smooth muscle.
    Murthy KS; Makhlouf GM
    Mol Pharmacol; 1996 Oct; 50(4):870-7. PubMed ID: 8863832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative comparisons of muscarinic and bradykinin receptor-mediated Ins (1,4,5)P3 accumulation and Ca2+ signalling in human neuroblastoma cells.
    Willars GB; Nahorski SR
    Br J Pharmacol; 1995 Mar; 114(6):1133-42. PubMed ID: 7620702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of inositol 1,3,4,5-tetrakisphosphate in internal Ca2+ mobilization following histamine H1 receptor stimulation in DDT1 MF-2 cells.
    Van der Zee L; Sipma H; Nelemans A; Den Hertog A
    Eur J Pharmacol; 1995 May; 289(3):463-9. PubMed ID: 7556415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose stimulates voltage- and calcium-dependent inositol trisphosphate production and intracellular calcium mobilization in insulin-secreting beta TC3 cells.
    Gromada J; Frøkjaer-Jensen J; Dissing S
    Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):339-45. PubMed ID: 8660305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal transduction mechanisms involved in hormonal Ca2+ fluxes.
    Williamson JR; Monck JR
    Environ Health Perspect; 1990 Mar; 84():121-36. PubMed ID: 2190806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inositol 1,4,5-trisphosphorothioate, a stable analogue of inositol trisphosphate which mobilizes intracellular calcium.
    Taylor CW; Berridge MJ; Cooke AM; Potter BV
    Biochem J; 1989 May; 259(3):645-50. PubMed ID: 2786414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.