These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28503692)

  • 1. Time-resolved measurements of product formation in the low-temperature (550-675 K) oxidation of neopentane: a probe to investigate chain-branching mechanism.
    Eskola AJ; Antonov IO; Sheps L; Savee JD; Osborn DL; Taatjes CA
    Phys Chem Chem Phys; 2017 May; 19(21):13731-13745. PubMed ID: 28503692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Stabilization Effects on Ketone Autoxidation: Isomer-Specific Cyclic Ether and Ketohydroperoxide Formation in the Low-Temperature (400-625 K) Oxidation of Diethyl Ketone.
    Scheer AM; Eskola AJ; Osborn DL; Sheps L; Taatjes CA
    J Phys Chem A; 2016 Nov; 120(43):8625-8636. PubMed ID: 27726367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Organic Acids and Carbonyl Compounds in n-Butane Oxidation via γ-Ketohydroperoxide Decomposition.
    Popolan-Vaida DM; Eskola AJ; Rotavera B; Lockyear JF; Wang Z; Sarathy SM; Caravan RL; Zádor J; Sheps L; Lucassen A; Moshammer K; Dagaut P; Osborn DL; Hansen N; Leone SR; Taatjes CA
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209168. PubMed ID: 35895936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchrotron photoionization mass spectrometry measurements of product formation in low-temperature n-butane oxidation: toward a fundamental understanding of autoignition chemistry and n-C4H9 + O2/s-C4H9 + O2 reactions.
    Eskola AJ; Welz O; Savee JD; Osborn DL; Taatjes CA
    J Phys Chem A; 2013 Nov; 117(47):12216-35. PubMed ID: 24125058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the Ether Functional Group on Ketohydroperoxide Formation in Cyclic Hydrocarbons: Tetrahydropyran and Cyclohexane.
    Davis JC; Koritzke AL; Caravan RL; Antonov IO; Christianson MG; Doner AC; Osborn DL; Sheps L; Taatjes CA; Rotavera B
    J Phys Chem A; 2019 May; 123(17):3634-3646. PubMed ID: 30865470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550 K-750 K) oxidation chemistry of isopentanol.
    Welz O; Zádor J; Savee JD; Ng MY; Meloni G; Fernandes RX; Sheps L; Simmons BA; Lee TS; Osborn DL; Taatjes CA
    Phys Chem Chem Phys; 2012 Mar; 14(9):3112-27. PubMed ID: 22286869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct time-resolved detection and quantification of key reactive intermediates in diethyl ether oxidation at T = 450-600 K.
    Demireva M; Au K; Sheps L
    Phys Chem Chem Phys; 2020 Nov; 22(42):24649-24661. PubMed ID: 33099590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isomer-Selective Detection of Keto-Hydroperoxides in the Low-Temperature Oxidation of Tetrahydrofuran.
    Hansen N; Moshammer K; Jasper AW
    J Phys Chem A; 2019 Sep; 123(38):8274-8284. PubMed ID: 31483667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane.
    Rotavera B; Zádor J; Welz O; Sheps L; Scheer AM; Savee JD; Akbar Ali M; Lee TS; Simmons BA; Osborn DL; Violi A; Taatjes CA
    J Phys Chem A; 2014 Nov; 118(44):10188-200. PubMed ID: 25234586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-Dependent Competition among Reaction Pathways from First- and Second-O2 Additions in the Low-Temperature Oxidation of Tetrahydrofuran.
    Antonov IO; Zádor J; Rotavera B; Papajak E; Osborn DL; Taatjes CA; Sheps L
    J Phys Chem A; 2016 Aug; 120(33):6582-95. PubMed ID: 27441526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and Updated Kinetic Modeling Study of Neopentane Low Temperature Oxidation.
    Liu B; Dong S; Debleza J; Chen W; Xu Q; Wang H; Bourgalais J; Herbinet O; Curran HJ; Battin-Leclerc F; Wang Z
    J Phys Chem A; 2023 Mar; 127(9):2113-2122. PubMed ID: 36815799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Insights into Low-Temperature Oxidation of Propane from Synchrotron Photoionization Mass Spectrometry and Multiscale Informatics Modeling.
    Welz O; Burke MP; Antonov IO; Goldsmith CF; Savee JD; Osborn DL; Taatjes CA; Klippenstein SJ; Sheps L
    J Phys Chem A; 2015 Jul; 119(28):7116-29. PubMed ID: 25860187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Products from the Oxidation of n-Butane from 298 to 735 K Using Either Cl Atom or Thermal Initiation: Formation of Acetone and Acetic Acid-Possible Roaming Reactions?
    Kaiser EW; Wallington TJ
    J Phys Chem A; 2017 Nov; 121(45):8543-8560. PubMed ID: 28982240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature combustion chemistry of n-butanol: principal oxidation pathways of hydroxybutyl radicals.
    Welz O; Zádor J; Savee JD; Sheps L; Osborn DL; Taatjes CA
    J Phys Chem A; 2013 Nov; 117(46):11983-2001. PubMed ID: 23808372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the kinetics and yields of OH radical production from the CH3OCH2 + O2 reaction in the temperature range 195-650 K: an experimental and computational study.
    Eskola AJ; Carr SA; Shannon RJ; Wang B; Blitz MA; Pilling MJ; Seakins PW; Robertson SH
    J Phys Chem A; 2014 Aug; 118(34):6773-88. PubMed ID: 25069059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the OH-initiated oxidation of hydroxyacetone over the temperature range 236-298 K.
    Butkovskaya NI; Pouvesle N; Kukui A; Mu Y; Le Bras G
    J Phys Chem A; 2006 Jun; 110(21):6833-43. PubMed ID: 16722699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuum ultraviolet photoionization cross section of the hydroxyl radical.
    Dodson LG; Savee JD; Gozem S; Shen L; Krylov AI; Taatjes CA; Osborn DL; Okumura M
    J Chem Phys; 2018 May; 148(18):184302. PubMed ID: 29764149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermochemical and kinetic analysis on the reactions of O2 with products from OH addition to isobutene, 2-hydroxy-1,1-dimethylethyl, and 2-hydroxy-2-methylpropyl radicals: HO2 formation from oxidation of neopentane, Part II.
    Sun H; Bozzelli JW; Law CK
    J Phys Chem A; 2007 Jun; 111(23):4974-86. PubMed ID: 17511431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature combustion chemistry of novel biofuels: resonance-stabilized QOOH in the oxidation of diethyl ketone.
    Scheer AM; Welz O; Zádor J; Osborn DL; Taatjes CA
    Phys Chem Chem Phys; 2014 Jul; 16(26):13027-40. PubMed ID: 24585023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.