These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28503782)

  • 21. CRootBox: a structural-functional modelling framework for root systems.
    Schnepf A; Leitner D; Landl M; Lobet G; Mai TH; Morandage S; Sheng C; Zörner M; Vanderborght J; Vereecken H
    Ann Bot; 2018 Apr; 121(5):1033-1053. PubMed ID: 29432520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture.
    Rogers ED; Monaenkova D; Mijar M; Nori A; Goldman DI; Benfey PN
    Plant Physiol; 2016 Jul; 171(3):2028-40. PubMed ID: 27208237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of micro-scale soil deformation around roots using four-dimensional synchrotron tomography and image correlation.
    Keyes SD; Cooper L; Duncan S; Koebernick N; McKay Fletcher DM; Scotson CP; van Veelen A; Sinclair I; Roose T
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29118113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis.
    Downie HF; Adu MO; Schmidt S; Otten W; Dupuy LX; White PJ; Valentine TA
    Plant Cell Environ; 2015 Jul; 38(7):1213-32. PubMed ID: 25211059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soil strength influences wheat root interactions with soil macropores.
    Atkinson JA; Hawkesford MJ; Whalley WR; Zhou H; Mooney SJ
    Plant Cell Environ; 2020 Jan; 43(1):235-245. PubMed ID: 31600410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography.
    Flavel RJ; Guppy CN; Tighe M; Watt M; McNeill A; Young IM
    J Exp Bot; 2012 Apr; 63(7):2503-11. PubMed ID: 22271595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The distribution and abundance of wheat roots in a dense, structured subsoil--implications for water uptake.
    White RG; Kirkegaard JA
    Plant Cell Environ; 2010 Feb; 33(2):133-48. PubMed ID: 19895403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Root water uptake and its pathways across the root: quantification at the cellular scale.
    Zarebanadkouki M; Trtik P; Hayat F; Carminati A; Kaestner A
    Sci Rep; 2019 Sep; 9(1):12979. PubMed ID: 31506538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.
    Liu XP; Zhang WJ; Wang XY; Cai YJ; Chang JG
    Tree Physiol; 2015 Dec; 35(12):1343-55. PubMed ID: 26358048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reorganisation of rhizosphere soil pore structure by wild plant species in compacted soils.
    Burr-Hersey JE; Ritz K; Bengough GA; Mooney SJ
    J Exp Bot; 2020 Oct; 71(19):6107-6115. PubMed ID: 32668003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A dual porosity model of nutrient uptake by root hairs.
    Zygalakis KC; Kirk GJ; Jones DL; Wissuwa M; Roose T
    New Phytol; 2011 Nov; 192(3):676-88. PubMed ID: 21827499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of the matric potential of soil water in the rhizosphere.
    Whalley WR; Ober ES; Jenkins M
    J Exp Bot; 2013 Oct; 64(13):3951-63. PubMed ID: 23526772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of the hydraulic conductivities of lupine roots by inverse modelling of high-resolution measurements of root water uptake.
    Zarebanadkouki M; Meunier F; Couvreur V; Cesar J; Javaux M; Carminati A
    Ann Bot; 2016 Oct; 118(4):853-864. PubMed ID: 27539602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial heterogeneity of soil water around single roots: use of CT-scanning to predict fungal growth in the rhizosphere.
    Grose MJ; Gilligan CA; Spencer D; Goddard BVD
    New Phytol; 1996 Jun; 133(2):261-272. PubMed ID: 29681072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model for water uptake by plant roots.
    Roose T; Fowler AC
    J Theor Biol; 2004 May; 228(2):155-71. PubMed ID: 15094012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhizosphere hydrophobicity: A positive trait in the competition for water.
    Zeppenfeld T; Balkenhol N; Kóvacs K; Carminati A
    PLoS One; 2017; 12(7):e0182188. PubMed ID: 28753673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils.
    Draye X; Kim Y; Lobet G; Javaux M
    J Exp Bot; 2010 May; 61(8):2145-55. PubMed ID: 20453027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interaction between wheat roots and soil pores in structured field soil.
    Zhou H; Whalley WR; Hawkesford MJ; Ashton RW; Atkinson B; Atkinson JA; Sturrock CJ; Bennett MJ; Mooney SJ
    J Exp Bot; 2021 Feb; 72(2):747-756. PubMed ID: 33064808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualization of root water uptake: quantification of deuterated water transport in roots using neutron radiography and numerical modeling.
    Zarebanadkouki M; Kroener E; Kaestner A; Carminati A
    Plant Physiol; 2014 Oct; 166(2):487-99. PubMed ID: 25189533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roots compact the surrounding soil depending on the structures they encounter.
    Lucas M; Schlüter S; Vogel HJ; Vetterlein D
    Sci Rep; 2019 Nov; 9(1):16236. PubMed ID: 31700059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.