These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 28503804)
1. Neural correlates of visuomotor adjustments during scaling of human finger movements. Brand J; Michels L; Bakker R; Hepp-Reymond MC; Kiper D; Morari M; Eng K Eur J Neurosci; 2017 Jul; 46(1):1717-1729. PubMed ID: 28503804 [TBL] [Abstract][Full Text] [Related]
2. A functional MRI study of motor dysfunction in Friedreich's ataxia. Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856 [TBL] [Abstract][Full Text] [Related]
3. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Rektor I; Sochůrková D; Bocková M Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240 [TBL] [Abstract][Full Text] [Related]
4. Human cerebellum plays an important role in memory-timed finger movement: an fMRI study. Kawashima R; Okuda J; Umetsu A; Sugiura M; Inoue K; Suzuki K; Tabuchi M; Tsukiura T; Narayan SL; Nagasaka T; Yanagawa I; Fujii T; Takahashi S; Fukuda H; Yamadori A J Neurophysiol; 2000 Feb; 83(2):1079-87. PubMed ID: 10669519 [TBL] [Abstract][Full Text] [Related]
5. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. Winstein CJ; Grafton ST; Pohl PS J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621 [TBL] [Abstract][Full Text] [Related]
6. Cerebral structures participating in motor preparation in humans: a positron emission tomography study. Deiber MP; Ibañez V; Sadato N; Hallett M J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554 [TBL] [Abstract][Full Text] [Related]
7. Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. Deiber MP; Honda M; Ibañez V; Sadato N; Hallett M J Neurophysiol; 1999 Jun; 81(6):3065-77. PubMed ID: 10368421 [TBL] [Abstract][Full Text] [Related]
8. Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements. Sun H; Blakely TM; Darvas F; Wander JD; Johnson LA; Su DK; Miller KJ; Fetz EE; Ojemann JG Clin Neurophysiol; 2015 Nov; 126(11):2150-61. PubMed ID: 25680948 [TBL] [Abstract][Full Text] [Related]
9. The role of the primary somatosensory cortex in an auditorily paced finger tapping task. Pollok B; Müller K; Aschersleben G; Schnitzler A; Prinz W Exp Brain Res; 2004 May; 156(1):111-7. PubMed ID: 15007587 [TBL] [Abstract][Full Text] [Related]
10. Neural basis for the processes that underlie visually guided and internally guided force control in humans. Vaillancourt DE; Thulborn KR; Corcos DM J Neurophysiol; 2003 Nov; 90(5):3330-40. PubMed ID: 12840082 [TBL] [Abstract][Full Text] [Related]
11. Involvement of area MT in bimanual finger movements in left-handers: an fMRI study. Müller K; Kleiser R; Mechsner F; Seitz RJ Eur J Neurosci; 2011 Oct; 34(8):1301-9. PubMed ID: 21933287 [TBL] [Abstract][Full Text] [Related]
12. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Jäncke L; Loose R; Lutz K; Specht K; Shah NJ Brain Res Cogn Brain Res; 2000 Sep; 10(1-2):51-66. PubMed ID: 10978692 [TBL] [Abstract][Full Text] [Related]
14. PET study of visually and non-visually guided finger movements in patients with severe pan-sensory neuropathies and healthy controls. Weeks RA; Gerloff C; Dalakas M; Hallett M Exp Brain Res; 1999 Oct; 128(3):291-302. PubMed ID: 10501801 [TBL] [Abstract][Full Text] [Related]
15. Separating brain regions involved in internally guided and visual feedback control of moving effectors: an event-related fMRI study. Ogawa K; Inui T; Sugio T Neuroimage; 2006 Oct; 32(4):1760-70. PubMed ID: 16863694 [TBL] [Abstract][Full Text] [Related]