These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28504133)

  • 21. Fabricating lignin-containing cellulose nanofibrils with unique properties from agricultural residues with assistance of deep eutectic solvents.
    Li X; Ning C; Li L; Liu W; Ren Q; Hou Q
    Carbohydr Polym; 2021 Nov; 274():118650. PubMed ID: 34702469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep eutectic solvent pretreatment and subsequent saccharification of corncob.
    Procentese A; Johnson E; Orr V; Garruto Campanile A; Wood JA; Marzocchella A; Rehmann L
    Bioresour Technol; 2015 Sep; 192():31-6. PubMed ID: 26005926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea : choline chloride deep eutectic solvent.
    Monhemi H; Housaindokht MR; Moosavi-Movahedi AA; Bozorgmehr MR
    Phys Chem Chem Phys; 2014 Jul; 16(28):14882-93. PubMed ID: 24930496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved refining properties of pulps pretreated with ionic liquids under mild conditions.
    Pang Z; Chen J; Dong C; Yang G; Liu Y
    Bioresour Technol; 2013 Jan; 128():813-7. PubMed ID: 23182038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of Dissolving Pulp by Combined Mechanical and Deep Eutectic Solvent Treatment.
    Li X; Chen J; Wang B; Zhang L; Zhang K; Yang G
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea.
    Jiang Z; Yuan J; Wang P; Fan X; Xu J; Wang Q; Zhang L
    Int J Biol Macromol; 2018 Nov; 119():423-430. PubMed ID: 30055275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of amino-functionalized nanocellulose by guanidine based deep eutectic solvent and its application in fine fibers retention.
    Zhang X; Huo D; Wei J; Wang J; Zhang Q; Yang Q; Zhang F; Fang G; Zhu H; Si C
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129473. PubMed ID: 38242405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wet-Spun Composite Filaments from Lignocellulose Nanofibrils/Alginate and Their Physico-Mechanical Properties.
    Park JS; Han SY; Bandi R; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Youe WJ; Gwon J; Park CW; Lee SH
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches.
    Qing Y; Sabo R; Zhu JY; Agarwal U; Cai Z; Wu Y
    Carbohydr Polym; 2013 Aug; 97(1):226-34. PubMed ID: 23769541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new quality index for benchmarking of different cellulose nanofibrils.
    Desmaisons J; Boutonnet E; Rueff M; Dufresne A; Bras J
    Carbohydr Polym; 2017 Oct; 174():318-329. PubMed ID: 28821073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extraction and Characterization of Nanocellulose Structures from Linter Dissolving Pulp Using Ultrafine Grinder.
    Ghasemi S; Behrooz R; Ghasemi I
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5791-7. PubMed ID: 27427633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles.
    Morrison HG; Sun CC; Neervannan S
    Int J Pharm; 2009 Aug; 378(1-2):136-9. PubMed ID: 19477257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recyclable deep eutectic solvent for the production of cationic nanocelluloses.
    Li P; Sirviö JA; Asante B; Liimatainen H
    Carbohydr Polym; 2018 Nov; 199():219-227. PubMed ID: 30143124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of cationic starch in the presence of cellulose nanofibrils on structural, optical and strength properties of paper from soda bagasse pulp.
    Tajik M; Torshizi HJ; Resalati H; Hamzeh Y
    Carbohydr Polym; 2018 Aug; 194():1-8. PubMed ID: 29801816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multifunctional cellulosic materials prepared by a reactive DES based zero-waste system.
    Yang X; Abe K; Yano H; Wang L
    Nano Lett; 2022 Aug; 22(15):6128-6134. PubMed ID: 35852968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulose and lignocellulose nanofibril suspensions and films: A comparison.
    Amini E; Hafez I; Tajvidi M; Bousfield DW
    Carbohydr Polym; 2020 Dec; 250():117011. PubMed ID: 33049872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of Deep Eutectic Solvents on Pretreatment of Raw Ramie Fibers for Cellulose Nanofibril Production.
    Yu W; Wang C; Yi Y; Wang H; Zeng L; Li M; Yang Y; Tan Z
    ACS Omega; 2020 Mar; 5(10):5580-5588. PubMed ID: 32201852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NO
    Waite SL; Li H; Page AJ
    J Phys Chem B; 2018 Apr; 122(15):4336-4344. PubMed ID: 29565137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.