BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28504135)

  • 1. A versatile method for the surface tailoring of cellulose nanocrystal building blocks by acylation with functional vinyl esters.
    Brand J; Pecastaings G; Sèbe G
    Carbohydr Polym; 2017 Aug; 169():189-197. PubMed ID: 28504135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biobased and Sustainable Alternative Route to Long-Chain Cellulose Esters.
    Jebrane M; Terziev N; Heinmaa I
    Biomacromolecules; 2017 Feb; 18(2):498-504. PubMed ID: 28084073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of nanocellulose with canola oil fatty acid methyl ester.
    Wei L; Agarwal UP; Hirth KC; Matuana LM; Sabo RC; Stark NM
    Carbohydr Polym; 2017 Aug; 169():108-116. PubMed ID: 28504126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose Nanocrystal Isolation from Hardwood Pulp using Various Hydrolysis Conditions.
    Lin KH; Enomae T; Chang FC
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31623140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of the Thermal and Optical Performances of Protective Polydimethylsiloxane Space Coatings with Cellulose Nanocrystal Additives.
    Planes M; Brand J; Lewandowski S; Remaury S; Solé S; Le Coz C; Carlotti S; Sèbe G
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28030-28039. PubMed ID: 27673743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individually Dispersed Wood-Based Cellulose Nanocrystals.
    Chang H; Luo J; Bakhtiary Davijani AA; Chien AT; Wang PH; Liu HC; Kumar S
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5768-71. PubMed ID: 26901421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production.
    Reid MS; Villalobos M; Cranston ED
    Langmuir; 2017 Feb; 33(7):1583-1598. PubMed ID: 27959566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane.
    Khanjanzadeh H; Behrooz R; Bahramifar N; Gindl-Altmutter W; Bacher M; Edler M; Griesser T
    Int J Biol Macromol; 2018 Jan; 106():1288-1296. PubMed ID: 28855133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocrystalline cellulose derived from spruce wood: Influence of process parameters.
    Kumar P; Miller K; Kermanshahi-Pour A; Brar SK; Beims RF; Xu CC
    Int J Biol Macromol; 2022 Nov; 221():426-434. PubMed ID: 36084872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization.
    Rana AK; Frollini E; Thakur VK
    Int J Biol Macromol; 2021 Jul; 182():1554-1581. PubMed ID: 34029581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of cellulose nanocrystal surface sulfate groups toward biomimetic nanostructures in aqueous media.
    Zoppe JO; Johansson LS; Seppälä J
    Carbohydr Polym; 2015 Aug; 126():23-31. PubMed ID: 25933518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions.
    Cetin NS; Tingaut P; Ozmen N; Henry N; Harper D; Dadmun M; Sèbe G
    Macromol Biosci; 2009 Oct; 9(10):997-1003. PubMed ID: 19598207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents.
    Abitbol T; Palermo A; Moran-Mirabal JM; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3278-84. PubMed ID: 23952644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer.
    Gong X; Wang Y; Chen L
    Carbohydr Polym; 2017 Aug; 169():295-303. PubMed ID: 28504148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides.
    Fang W; Arola S; Malho JM; Kontturi E; Linder MB; Laaksonen P
    Biomacromolecules; 2016 Apr; 17(4):1458-65. PubMed ID: 26907991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.
    Arrieta MP; Fortunati E; Dominici F; Rayón E; López J; Kenny JM
    Carbohydr Polym; 2014 Jul; 107():16-24. PubMed ID: 24702913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grafting Nature-Inspired and Bio-Based Phenolic Esters onto Cellulose Nanocrystals Gives Biomaterials with Photostable Anti-UV Properties.
    Joram Mendoza D; Mouterde LMM; Browne C; Singh Raghuwanshi V; Simon GP; Garnier G; Allais F
    ChemSusChem; 2020 Dec; 13(24):6552-6561. PubMed ID: 32956544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels.
    Filpponen I; Argyropoulos DS
    Biomacromolecules; 2010 Apr; 11(4):1060-6. PubMed ID: 20235575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds.
    Schyrr B; Pasche S; Voirin G; Weder C; Simon YC; Foster EJ
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12674-83. PubMed ID: 24955644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals.
    Teixeira RS; da Silva AS; Jang JH; Kim HW; Ishikawa K; Endo T; Lee SH; Bon EP
    Carbohydr Polym; 2015 Sep; 128():75-81. PubMed ID: 26005141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.