BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 28504247)

  • 1. Actomyosin meshwork mechanosensing enables tissue shape to orient cell force.
    Chanet S; Miller CJ; Vaishnav ED; Ermentrout B; Davidson LA; Martin AC
    Nat Commun; 2017 May; 8():15014. PubMed ID: 28504247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actomyosin-Driven Tension at Compartmental Boundaries Orients Cell Division Independently of Cell Geometry In Vivo.
    Scarpa E; Finet C; Blanchard GB; Sanson B
    Dev Cell; 2018 Dec; 47(6):727-740.e6. PubMed ID: 30503752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actomyosin-based tissue folding requires a multicellular myosin gradient.
    Heer NC; Miller PW; Chanet S; Stoop N; Dunkel J; Martin AC
    Development; 2017 May; 144(10):1876-1886. PubMed ID: 28432215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry can provide long-range mechanical guidance for embryogenesis.
    Dicko M; Saramito P; Blanchard GB; Lye CM; Sanson B; Étienne J
    PLoS Comput Biol; 2017 Mar; 13(3):e1005443. PubMed ID: 28346461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation.
    Fierling J; John A; Delorme B; Torzynski A; Blanchard GB; Lye CM; Popkova A; Malandain G; Sanson B; Étienne J; Marmottant P; Quilliet C; Rauzi M
    Nat Commun; 2022 Jun; 13(1):3348. PubMed ID: 35688832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triggering a cell shape change by exploiting preexisting actomyosin contractions.
    Roh-Johnson M; Shemer G; Higgins CD; McClellan JH; Werts AD; Tulu US; Gao L; Betzig E; Kiehart DP; Goldstein B
    Science; 2012 Mar; 335(6073):1232-5. PubMed ID: 22323741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive mechanical forces control cell-shape change during Drosophila ventral furrow formation.
    Polyakov O; He B; Swan M; Shaevitz JW; Kaschube M; Wieschaus E
    Biophys J; 2014 Aug; 107(4):998-1010. PubMed ID: 25140436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Gα12/13 exacerbates apical area dependence of actomyosin contractility.
    Xie S; Mason FM; Martin AC
    Mol Biol Cell; 2016 Nov; 27(22):3526-3536. PubMed ID: 27489340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A vertex model of Drosophila ventral furrow formation.
    Spahn P; Reuter R
    PLoS One; 2013; 8(9):e75051. PubMed ID: 24066163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drak Is Required for Actomyosin Organization During Drosophila Cellularization.
    Chougule AB; Hastert MC; Thomas JH
    G3 (Bethesda); 2016 Apr; 6(4):819-28. PubMed ID: 26818071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanical wave travels along a genetic guide to drive the formation of an epithelial furrow during Drosophila gastrulation.
    Popkova A; Andrenšek U; Pagnotta S; Ziherl P; Krajnc M; Rauzi M
    Dev Cell; 2024 Feb; 59(3):400-414.e5. PubMed ID: 38228140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic interplay of microtubule and actomyosin forces drive tissue extension.
    Singh A; Thale S; Leibner T; Lamparter L; Ricker A; Nüsse H; Klingauf J; Galic M; Ohlberger M; Matis M
    Nat Commun; 2024 Apr; 15(1):3198. PubMed ID: 38609383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular chirality arising from the self-organization of the actin cytoskeleton.
    Tee YH; Shemesh T; Thiagarajan V; Hariadi RF; Anderson KL; Page C; Volkmann N; Hanein D; Sivaramakrishnan S; Kozlov MM; Bershadsky AD
    Nat Cell Biol; 2015 Apr; 17(4):445-57. PubMed ID: 25799062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tensile ring drives tissue flows to shape the gastrulating amniote embryo.
    Saadaoui M; Rocancourt D; Roussel J; Corson F; Gros J
    Science; 2020 Jan; 367(6476):453-458. PubMed ID: 31974255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological Transformation and Force Generation of Active Cytoskeletal Networks.
    Bidone TC; Jung W; Maruri D; Borau C; Kamm RD; Kim T
    PLoS Comput Biol; 2017 Jan; 13(1):e1005277. PubMed ID: 28114384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of actin filaments during tension-dependent formation of actin bundles.
    Hirata H; Tatsumi H; Sokabe M
    Biochim Biophys Acta; 2007 Aug; 1770(8):1115-27. PubMed ID: 17498881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates.
    Walsh CJ
    Eur J Cell Biol; 2007 Feb; 86(2):85-98. PubMed ID: 17189659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force-dependent activation of actin elongation factor mDia1 protects the cytoskeleton from mechanical damage and promotes stress fiber repair.
    Valencia FR; Sandoval E; Du J; Iu E; Liu J; Plotnikov SV
    Dev Cell; 2021 Dec; 56(23):3288-3302.e5. PubMed ID: 34822787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Inhibition of Rho1-Mediated Actomyosin Contractility Coupled with Measurement of Epithelial Tension in Drosophila Embryos.
    Guo H; Swan M; He B
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37125810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsation and stabilization: contractile forces that underlie morphogenesis.
    Martin AC
    Dev Biol; 2010 May; 341(1):114-25. PubMed ID: 19874815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.