These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28504267)

  • 1. An in-plane magnetic chiral dichroism approach for measurement of intrinsic magnetic signals using transmitted electrons.
    Song D; Tavabi AH; Li ZA; Kovács A; Rusz J; Huang W; Richter G; Dunin-Borkowski RE; Zhu J
    Nat Commun; 2017 May; 8():15348. PubMed ID: 28504267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic measurement by electron magnetic circular dichroism in the transmission electron microscope.
    Song D; Wang Z; Zhu J
    Ultramicroscopy; 2019 Jun; 201():1-17. PubMed ID: 30904784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of magnetic circular dichroism using a transmission electron microscope.
    Schattschneider P; Rubino S; Hébert C; Rusz J; Kunes J; Novák P; Carlino E; Fabrizioli M; Panaccione G; Rossi G
    Nature; 2006 May; 441(7092):486-8. PubMed ID: 16724061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Measurement of Magnetic Moment Vectors Using Electron Magnetic Chiral Dichroism at Atomic Scale.
    Song D; Dunin-Borkowski RE
    Phys Rev Lett; 2021 Aug; 127(8):087202. PubMed ID: 34477412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic measurements with atomic-plane resolution.
    Rusz J; Muto S; Spiegelberg J; Adam R; Tatsumi K; Bürgler DE; Oppeneer PM; Schneider CM
    Nat Commun; 2016 Aug; 7():12672. PubMed ID: 27578421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative experimental determination of site-specific magnetic structures by transmitted electrons.
    Wang ZQ; Zhong XY; Yu R; Cheng ZY; Zhu J
    Nat Commun; 2013; 4():1395. PubMed ID: 23360986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general way for quantitative magnetic measurement by transmitted electrons.
    Song D; Li G; Cai J; Zhu J
    Sci Rep; 2016 Jan; 6():18489. PubMed ID: 26726959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale measurement of giant saturation magnetization in α″-Fe
    Chen X; Higashikozono S; Ito K; Jin L; Ho PL; Yu CP; Tai NH; Mayer J; Dunin-Borkowski RE; Suemasu T; Zhong X
    Ultramicroscopy; 2019 Aug; 203():37-43. PubMed ID: 30862364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy.
    Wang Z; Tavabi AH; Jin L; Rusz J; Tyutyunnikov D; Jiang H; Moritomo Y; Mayer J; Dunin-Borkowski RE; Yu R; Zhu J; Zhong X
    Nat Mater; 2018 Mar; 17(3):221-225. PubMed ID: 29403052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr
    Wang ZC; Zhong XY; Jin L; Chen XF; Moritomo Y; Mayer J
    Ultramicroscopy; 2017 May; 176():212-217. PubMed ID: 28089306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of electron magnetic circular dichroism signals under zone axial diffraction geometry.
    Song D; Rusz J; Cai J; Zhu J
    Ultramicroscopy; 2016 Oct; 169():44-54. PubMed ID: 27448200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the asymmetry of dynamical electron diffraction on intensity of acquired EMCD signals.
    Song D; Wang Z; Zhu J
    Ultramicroscopy; 2015 Jan; 148():42-51. PubMed ID: 25261842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic circular dichroism in electron energy loss spectrometry.
    Hébert C; Schattschneider P; Rubino S; Novak P; Rusz J; Stöger-Pollach M
    Ultramicroscopy; 2008 Feb; 108(3):277-84. PubMed ID: 18060698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blind identification of magnetic signals in electron magnetic chiral dichroism using independent component analysis.
    Spiegelberg J; Song D; Dunin-Borkowski RE; Zhu J; Rusz J
    Ultramicroscopy; 2018 Dec; 195():129-135. PubMed ID: 30237143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal and real space maps for EMCD experiments.
    Lidbaum H; Rusz J; Rubino S; Liebig A; Hjörvarsson B; Oppeneer PM; Eriksson O; Leifer K
    Ultramicroscopy; 2010 Oct; 110(11):1380-9. PubMed ID: 20692100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron Microscopy of Probability Currents at Atomic Resolution.
    Lubk A; Béché A; Verbeeck J
    Phys Rev Lett; 2015 Oct; 115(17):176101. PubMed ID: 26551126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of magnetic domain walls using electron magnetic chiral dichroism.
    Che RC; Liang CY; He X; Liu HH; Duan XF
    Sci Technol Adv Mater; 2011 Apr; 12(2):025004. PubMed ID: 27877386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron vortex beams prepared by a spiral aperture with the goal to measure EMCD on ferromagnetic films via STEM.
    Pohl D; Schneider S; Rusz J; Rellinghaus B
    Ultramicroscopy; 2015 Mar; 150():16-22. PubMed ID: 25497492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Chirality with Inelastic Electron-Light Scattering.
    Harvey TR; Henke JW; Kfir O; Lourenço-Martins H; Feist A; García de Abajo FJ; Ropers C
    Nano Lett; 2020 Jun; 20(6):4377-4383. PubMed ID: 32383890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic Defect Makes a Phase Plate for the Generation and High-Angular Splitting of Electron Vortex Beams.
    Zhong X; Lin J; Kao S; Liao Z; Zhu J; Huang X; Zhang R; Xin HL
    ACS Nano; 2019 Apr; 13(4):3964-3970. PubMed ID: 30794384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.