These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28504278)

  • 1. High-frequency linear rheology of hydrogels probed by ultrasound-driven microbubble dynamics.
    Jamburidze A; De Corato M; Huerre A; Pommella A; Garbin V
    Soft Matter; 2017 May; 13(21):3946-3953. PubMed ID: 28504278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface waves on a soft viscoelastic layer produced by an oscillating microbubble.
    Tinguely M; Hennessy MG; Pommella A; Matar OK; Garbin V
    Soft Matter; 2016 May; 12(18):4247-56. PubMed ID: 27071851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-linear response of colloid monolayers at high-frequency probed by ultrasound-driven microbubble dynamics.
    Saha S; Luckham PF; Garbin V
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):984-993. PubMed ID: 36327714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unifying Rayleigh-Plesset-type equation for bubbles in viscoelastic media.
    Oratis AT; Dijs K; Lajoinie G; Versluis M; Snoeijer JH
    J Acoust Soc Am; 2024 Feb; 155(2):1593-1605. PubMed ID: 38393739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape stability of a gas bubble in a soft solid.
    Murakami K; Gaudron R; Johnsen E
    Ultrason Sonochem; 2020 Oct; 67():105170. PubMed ID: 32442928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall.
    Suslov SA; Ooi A; Manasseh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066309. PubMed ID: 23005208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling Lipid-Coated Microbubbles in Focused Ultrasound Applications at Subresonance Frequencies.
    Gümmer J; Schenke S; Denner F
    Ultrasound Med Biol; 2021 Oct; 47(10):2958-2979. PubMed ID: 34344560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplets, Bubbles and Ultrasound Interactions.
    Shpak O; Verweij M; de Jong N; Versluis M
    Adv Exp Med Biol; 2016; 880():157-74. PubMed ID: 26486337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ synchrotron X-ray imaging of ultrasound (US)-generated bubbles: Influence of US frequency on microbubble cavitation for membrane fouling remediation.
    Ehsani M; Zhu N; Doan H; Lohi A; Abdelrasoul A
    Ultrason Sonochem; 2021 Sep; 77():105697. PubMed ID: 34388491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical microbubble dynamics in a viscoelastic medium at capillary breaching thresholds.
    Patterson B; Miller DL; Johnsen E
    J Acoust Soc Am; 2012 Dec; 132(6):3770-7. PubMed ID: 23231107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavitation Dynamics and Inertial Cavitation Threshold of Lipid Coated Microbubbles in Viscoelastic Media with Bubble-Bubble Interactions.
    Qin D; Zou Q; Lei S; Wang W; Li Z
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):263-8. PubMed ID: 18977009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of bubble-bubble interactions experiencing viscoelastic drag.
    Zilonova E; Solovchuk M; Sheu TWH
    Phys Rev E; 2019 Feb; 99(2-1):023109. PubMed ID: 30934281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling stable cavitation of coated microbubbles: A framework integrating smoothed dissipative particle dynamics and the Rayleigh-Plesset equation.
    Nguyen PH
    J Chem Phys; 2024 Aug; 161(6):. PubMed ID: 39136657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Newtonian rheological model for the interface of microbubble contrast agents.
    Chatterjee D; Sarkar K
    Ultrasound Med Biol; 2003 Dec; 29(12):1749-57. PubMed ID: 14698342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling high strain-rate microcavitation in soft materials: the role of material behavior in bubble dynamics.
    Tzoumaka A; Yang J; Buyukozturk S; Franck C; Henann DL
    Soft Matter; 2023 May; 19(21):3895-3909. PubMed ID: 37195685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound-Induced Bubble Clusters in Tissue-Mimicking Agar Phantoms.
    Movahed P; Kreider W; Maxwell AD; Dunmire B; Freund JB
    Ultrasound Med Biol; 2017 Oct; 43(10):2318-2328. PubMed ID: 28739379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of inter-bubble spacing on the resonance response of ultrasound contrast agent microbubbles.
    Yusefi H; Helfield B
    Ultrason Sonochem; 2022 Nov; 90():106191. PubMed ID: 36223708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.