These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 28504292)
1. Microstructure degradation of Ni/CGO anodes for solid oxide fuel cells after long operation time using 3D reconstructions by FIB tomography. Zekri A; Knipper M; Parisi J; Plaggenborg T Phys Chem Chem Phys; 2017 May; 19(21):13767-13777. PubMed ID: 28504292 [TBL] [Abstract][Full Text] [Related]
2. The Microstructural Reconstruction of Variously Sintered Ni-SDC Cermets Using Focused Ion Beam Scanning Electron Microscopy Nanotomography. Kapun G; Majorovits E; Šturm S; Marinšek M; Skalar T Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998151 [TBL] [Abstract][Full Text] [Related]
3. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells. Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116 [TBL] [Abstract][Full Text] [Related]
4. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance. Pecho OM; Mai A; Münch B; Hocker T; Flatt RJ; Holzer L Materials (Basel); 2015 Oct; 8(10):7129-7144. PubMed ID: 28793624 [TBL] [Abstract][Full Text] [Related]
5. Superstructure formation and variation in Ni-GDC cermet anodes in SOFC. Li ZP; Mori T; Auchterlonie GJ; Zou J; Drennan J Phys Chem Chem Phys; 2011 May; 13(20):9685-90. PubMed ID: 21494741 [TBL] [Abstract][Full Text] [Related]
7. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the Effect of Sulfur on the Performance of Nickel/Gadolinium-Doped Ceria Based Solid Oxide Fuel Cell Anodes. Riegraf M; Yurkiv V; Costa R; Schiller G; Friedrich KA ChemSusChem; 2017 Feb; 10(3):587-599. PubMed ID: 27863123 [TBL] [Abstract][Full Text] [Related]
9. Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film. Chen Y; Zhang Y; Baker J; Majumdar P; Yang Z; Han M; Chen F ACS Appl Mater Interfaces; 2014 Apr; 6(7):5130-6. PubMed ID: 24621230 [TBL] [Abstract][Full Text] [Related]
10. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells. Guo T; Dong X; Shirolkar MM; Song X; Wang M; Zhang L; Li M; Wang H ACS Appl Mater Interfaces; 2014 Sep; 6(18):16131-9. PubMed ID: 25162913 [TBL] [Abstract][Full Text] [Related]
11. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells. Jeong H; Kim JW; Park J; An J; Lee T; Prinz FB; Shim JH ACS Appl Mater Interfaces; 2016 Nov; 8(44):30090-30098. PubMed ID: 27739300 [TBL] [Abstract][Full Text] [Related]
12. Three-Phase 3D Reconstruction of a LiCoO2 Cathode via FIB-SEM Tomography. Liu Z; Chen-Wiegart YC; Wang J; Barnett SA; Faber KT Microsc Microanal; 2016 Feb; 22(1):140-8. PubMed ID: 26765538 [TBL] [Abstract][Full Text] [Related]
13. Mesoporous NiO-samaria doped ceria for low-temperature solid oxide fuel cells. Kim JY; Kim JH; Choi HW; Kim KH; Park SJ J Nanosci Nanotechnol; 2014 Aug; 14(8):6399-403. PubMed ID: 25936125 [TBL] [Abstract][Full Text] [Related]
14. Impact of anode microstructure on solid oxide fuel cells. Suzuki T; Hasan Z; Funahashi Y; Yamaguchi T; Fujishiro Y; Awano M Science; 2009 Aug; 325(5942):852-5. PubMed ID: 19679808 [TBL] [Abstract][Full Text] [Related]
15. 3D Microstructure Effects in Ni-YSZ Anodes: Prediction of Effective Transport Properties and Optimization of Redox Stability. Pecho OM; Stenzel O; Iwanschitz B; Gasser P; Neumann M; Schmidt V; Prestat M; Hocker T; Flatt RJ; Holzer L Materials (Basel); 2015 Aug; 8(9):5554-5585. PubMed ID: 28793523 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes. Graves C; Chatzichristodoulou C; Mogensen MB Faraday Discuss; 2015; 182():75-95. PubMed ID: 26284532 [TBL] [Abstract][Full Text] [Related]
17. Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells. Bessler WG; Vogler M; Störmer H; Gerthsen D; Utz A; Weber A; Ivers-Tiffée E Phys Chem Chem Phys; 2010 Nov; 12(42):13888-903. PubMed ID: 20820576 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional microstructure of high-performance pulsed-laser deposited Ni-YSZ SOFC anodes. Kennouche D; Hong J; Noh HS; Son JW; Barnett SA Phys Chem Chem Phys; 2014 Aug; 16(29):15249-55. PubMed ID: 24938312 [TBL] [Abstract][Full Text] [Related]
19. Understanding the Coarsening and Degradation in a Nanoscale Nickel Gadolinia-Doped-Ceria Electrode for High-Temperature Applications. Chen J; Ouyang M; Boldrin P; Atkinson A; Brandon NP ACS Appl Mater Interfaces; 2020 Oct; 12(42):47564-47573. PubMed ID: 33044810 [TBL] [Abstract][Full Text] [Related]
20. Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase. Wang F; Wang W; Qu J; Zhong Y; Tade MO; Shao Z Environ Sci Technol; 2014 Oct; 48(20):12427-34. PubMed ID: 25229807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]