These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28504351)

  • 21. Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe
    Hashkavayi AB; Raoof JB
    Biosens Bioelectron; 2017 May; 91():650-657. PubMed ID: 28110249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection.
    Lin M; Wang J; Zhou G; Wang J; Wu N; Lu J; Gao J; Chen X; Shi J; Zuo X; Fan C
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2151-5. PubMed ID: 25556850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical and experimental study towards a nanogap dielectric biosensor.
    Yi M; Jeong KH; Lee LP
    Biosens Bioelectron; 2005 Jan; 20(7):1320-6. PubMed ID: 15590285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects.
    Ghobaei Namhil Z; Kemp C; Verrelli E; Iles A; Pamme N; Adawi AM; Kemp NT
    Phys Chem Chem Phys; 2019 Jan; 21(2):681-691. PubMed ID: 30543220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Label-free electrochemical genosensor based on mesoporous silica thin film.
    Saadaoui M; Fernández I; Luna G; Díez P; Campuzano S; Raouafi N; Sánchez A; Pingarrón JM; Villalonga R
    Anal Bioanal Chem; 2016 Oct; 408(26):7321-7. PubMed ID: 27236313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of an electrochemical DNA biosensor with the DNA immobilization based on in situ generation of dithiocarbamate ligands.
    Wang L; Wang X; Chen X; Liu J; Liu S; Zhao C
    Bioelectrochemistry; 2012 Dec; 88():30-5. PubMed ID: 22763422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An electrochemical DNA biosensor based on Oracet Blue as a label for detection of Helicobacter pylori.
    Hajihosseini S; Nasirizadeh N; Hejazi MS; Yaghmaei P
    Int J Biol Macromol; 2016 Oct; 91():911-7. PubMed ID: 27156692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An electrochemical DNA sensor for sequence-specific DNA recognization in a homogeneous solution.
    Cui HF; Cheng L; Zhang J; Liu R; Zhang C; Fan H
    Biosens Bioelectron; 2014 Jun; 56():124-8. PubMed ID: 24480127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor.
    Ahangar LE; Mehrgardi MA
    Biosens Bioelectron; 2012; 38(1):252-7. PubMed ID: 22727625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrical detection of oligonucleotide using an aggregate of gold nanoparticles as a conductive tag.
    Fang C; Fan Y; Kong J; Gao Z; Balasubramanian N
    Anal Chem; 2008 Dec; 80(24):9387-94. PubMed ID: 19072259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mass-produced nanogap sensor arrays for ultrasensitive detection of DNA.
    Roy S; Chen X; Li MH; Peng Y; Anariba F; Gao Z
    J Am Chem Soc; 2009 Sep; 131(34):12211-7. PubMed ID: 19655794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembled nanogaps for molecular electronics.
    Tang Q; Tong Y; Jain T; Hassenkam T; Wan Q; Moth-Poulsen K; Bjørnholm T
    Nanotechnology; 2009 Jun; 20(24):245205. PubMed ID: 19468160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes.
    Karim MN; Lee JE; Lee HJ
    Biosens Bioelectron; 2014 Nov; 61():147-51. PubMed ID: 24874658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodes.
    Kumawat RL; Pathak B
    ACS Appl Bio Mater; 2021 Feb; 4(2):1403-1412. PubMed ID: 35014491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D nanogap interdigitated electrode array biosensors.
    Singh KV; Whited AM; Ragineni Y; Barrett TW; King J; Solanki R
    Anal Bioanal Chem; 2010 Jun; 397(4):1493-502. PubMed ID: 20419506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles.
    Li H; Rothberg LJ
    Anal Chem; 2004 Sep; 76(18):5414-7. PubMed ID: 15362900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructured rough gold electrodes as platforms to enhance the sensitivity of electrochemical genosensors.
    García-Mendiola T; Gamero M; Campuzano S; Revenga-Parra M; Alonso C; Pedrero M; Pariente F; Pingarrón JM; Lorenzo E
    Anal Chim Acta; 2013 Jul; 788():141-7. PubMed ID: 23845493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of antigen by digital domain analysis of integrated nanogap biosensors.
    Lee CY; Park HJ; Park J; Park DK; Pyo H; Kim SC; Yun WS
    Biosens Bioelectron; 2017 Nov; 97():273-277. PubMed ID: 28609718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoparticle-enhanced sensitivity of a nanogap-interdigitated electrode array impedimetric biosensor.
    Singh KV; Bhura DK; Nandamuri G; Whited AM; Evans D; King J; Solanki R
    Langmuir; 2011 Nov; 27(22):13931-9. PubMed ID: 21942636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of electrochemical DNA biosensor based on gold nanoparticle modified electrode by electroless deposition.
    Liu S; Liu J; Wang L; Zhao F
    Bioelectrochemistry; 2010 Aug; 79(1):37-42. PubMed ID: 19914151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.