These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Activity Regulates the Incidence of Heteronymous Sensory-Motor Connections. Mendelsohn AI; Simon CM; Abbott LF; Mentis GZ; Jessell TM Neuron; 2015 Jul; 87(1):111-23. PubMed ID: 26094608 [TBL] [Abstract][Full Text] [Related]
4. Synaptotagmin-2, and -1, linked to neurotransmission impairment and vulnerability in Spinal Muscular Atrophy. Tejero R; Lopez-Manzaneda M; Arumugam S; Tabares L Hum Mol Genet; 2016 Nov; 25(21):4703-4716. PubMed ID: 28173138 [TBL] [Abstract][Full Text] [Related]
5. Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy. Dachs E; Piedrafita L; Hereu M; Esquerda JE; Calderó J Neuroscience; 2013 Oct; 250():417-33. PubMed ID: 23876328 [TBL] [Abstract][Full Text] [Related]
6. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Mentis GZ; Blivis D; Liu W; Drobac E; Crowder ME; Kong L; Alvarez FJ; Sumner CJ; O'Donovan MJ Neuron; 2011 Feb; 69(3):453-67. PubMed ID: 21315257 [TBL] [Abstract][Full Text] [Related]
7. Neurotransmitter release in motor nerve terminals of a mouse model of mild spinal muscular atrophy. Ruiz R; Tabares L J Anat; 2014 Jan; 224(1):74-84. PubMed ID: 23489475 [TBL] [Abstract][Full Text] [Related]
8. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. Ling KK; Lin MY; Zingg B; Feng Z; Ko CP PLoS One; 2010 Nov; 5(11):e15457. PubMed ID: 21085654 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional profiling of differentially vulnerable motor neurons at pre-symptomatic stage in the Smn (2b/-) mouse model of spinal muscular atrophy. Murray LM; Beauvais A; Gibeault S; Courtney NL; Kothary R Acta Neuropathol Commun; 2015 Sep; 3():55. PubMed ID: 26374403 [TBL] [Abstract][Full Text] [Related]
10. Preservation of VGLUT1 synapses on ventral calbindin-immunoreactive interneurons and normal locomotor function in a mouse model of spinal muscular atrophy. Thirumalai V; Behrend RM; Birineni S; Liu W; Blivis D; O'Donovan MJ J Neurophysiol; 2013 Feb; 109(3):702-10. PubMed ID: 23136344 [TBL] [Abstract][Full Text] [Related]
11. SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy. See K; Yadav P; Giegerich M; Cheong PS; Graf M; Vyas H; Lee SG; Mathavan S; Fischer U; Sendtner M; Winkler C Hum Mol Genet; 2014 Apr; 23(7):1754-70. PubMed ID: 24218366 [TBL] [Abstract][Full Text] [Related]
12. Cross-disease comparison of amyotrophic lateral sclerosis and spinal muscular atrophy reveals conservation of selective vulnerability but differential neuromuscular junction pathology. Comley LH; Nijssen J; Frost-Nylen J; Hedlund E J Comp Neurol; 2016 May; 524(7):1424-42. PubMed ID: 26502195 [TBL] [Abstract][Full Text] [Related]
13. Motor neuron pathology and behavioral alterations at late stages in a SMA mouse model. Fulceri F; Bartalucci A; Paparelli S; Pasquali L; Biagioni F; Ferrucci M; Ruffoli R; Fornai F Brain Res; 2012 Mar; 1442():66-75. PubMed ID: 22306031 [TBL] [Abstract][Full Text] [Related]
14. Established Stem Cell Model of Spinal Muscular Atrophy Is Applicable in the Evaluation of the Efficacy of Thyrotropin-Releasing Hormone Analog. Ohuchi K; Funato M; Kato Z; Seki J; Kawase C; Tamai Y; Ono Y; Nagahara Y; Noda Y; Kameyama T; Ando S; Tsuruma K; Shimazawa M; Hara H; Kaneko H Stem Cells Transl Med; 2016 Feb; 5(2):152-63. PubMed ID: 26683872 [TBL] [Abstract][Full Text] [Related]
15. Oligodendrocyte development and CNS myelination are unaffected in a mouse model of severe spinal muscular atrophy. O'Meara RW; Cummings SE; De Repentigny Y; McFall E; Michalski JP; Deguise MO; Gibeault S; Kothary R Hum Mol Genet; 2017 Jan; 26(2):282-292. PubMed ID: 28069797 [TBL] [Abstract][Full Text] [Related]
16. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. Passini MA; Bu J; Roskelley EM; Richards AM; Sardi SP; O'Riordan CR; Klinger KW; Shihabuddin LS; Cheng SH J Clin Invest; 2010 Apr; 120(4):1253-64. PubMed ID: 20234094 [TBL] [Abstract][Full Text] [Related]
17. SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Riessland M; Ackermann B; Förster A; Jakubik M; Hauke J; Garbes L; Fritzsche I; Mende Y; Blumcke I; Hahnen E; Wirth B Hum Mol Genet; 2010 Apr; 19(8):1492-506. PubMed ID: 20097677 [TBL] [Abstract][Full Text] [Related]
18. Autophagy modulators regulate survival motor neuron protein stability in motoneurons. Periyakaruppiah A; de la Fuente S; Arumugam S; Bahí N; Garcera A; Soler RM Exp Neurol; 2016 Sep; 283(Pt A):287-97. PubMed ID: 27373203 [No Abstract] [Full Text] [Related]
19. Astrocyte-produced miR-146a as a mediator of motor neuron loss in spinal muscular atrophy. Sison SL; Patitucci TN; Seminary ER; Villalon E; Lorson CL; Ebert AD Hum Mol Genet; 2017 Sep; 26(17):3409-3420. PubMed ID: 28637335 [TBL] [Abstract][Full Text] [Related]
20. The effect of the DcpS inhibitor D156844 on the protective action of follistatin in mice with spinal muscular atrophy. Harris AW; Butchbach ME Neuromuscul Disord; 2015 Sep; 25(9):699-705. PubMed ID: 26055638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]