BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28504943)

  • 1. Toward Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.
    Gui K; Liu H; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2054-2066. PubMed ID: 28504943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retraining of Human Gait - Are Lightweight Cable-Driven Leg Exoskeleton Designs Effective?
    Jin X; Prado A; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):847-855. PubMed ID: 29641389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants.
    Pinheiro C; Figueiredo J; Magalhães N; Santos CP
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke.
    Contreras-Vidal JL; Bortole M; Zhu F; Nathan K; Venkatakrishnan A; Francisco GE; Soto R; Pons JL
    Am J Phys Med Rehabil; 2018 Aug; 97(8):541-550. PubMed ID: 29481376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.
    He Y; Nathan K; Venkatakrishnan A; Rovekamp R; Beck C; Ozdemir R; Francisco GE; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3985-8. PubMed ID: 25570865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable hip-assist robot modulates cortical activation during gait in stroke patients: a functional near-infrared spectroscopy study.
    Lee SH; Lee HJ; Shim Y; Chang WH; Choi BO; Ryu GH; Kim YH
    J Neuroeng Rehabil; 2020 Oct; 17(1):145. PubMed ID: 33121535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-centered design of a novel soft exosuit for post-stroke gait rehabilitation.
    Krishnan C; Adeeko OP; Washabaugh EP; Augenstein TE; Brudzinski M; Portelli A; Kalpakjian CZ
    J Neuroeng Rehabil; 2024 Apr; 21(1):62. PubMed ID: 38658969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the Synchronization-Based Control of a Wearable Robot Having a Non-Exoskeletal Structure on the Hemiplegic Gait of Stroke Patients.
    Mizukami N; Takeuchi S; Tetsuya M; Tsukahara A; Yoshida K; Matsushima A; Maruyama Y; Tako K; Hashimoto M
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1011-1016. PubMed ID: 29752236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exoskeleton use in post-stroke gait rehabilitation: a qualitative study of the perspectives of persons post-stroke and physiotherapists.
    Vaughan-Graham J; Brooks D; Rose L; Nejat G; Pons J; Patterson K
    J Neuroeng Rehabil; 2020 Sep; 17(1):123. PubMed ID: 32912215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Recognition and Assessment of Post-Stroke Hemiparetic Gait by Fusing Kinematic, Kinetic, and Electrophysiological Data.
    Cui C; Bian GB; Hou ZG; Zhao J; Su G; Zhou H; Peng L; Wang W
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):856-864. PubMed ID: 29641390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects.
    Wagner J; Solis-Escalante T; Grieshofer P; Neuper C; Müller-Putz G; Scherer R
    Neuroimage; 2012 Nov; 63(3):1203-11. PubMed ID: 22906791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study.
    Mizukami M; Yoshikawa K; Kawamoto H; Sano A; Koseki K; Asakwa Y; Iwamoto K; Nagata H; Tsurushima H; Nakai K; Marushima A; Sankai Y; Matsumura A
    Disabil Rehabil Assist Technol; 2017 Feb; 12(2):197-204. PubMed ID: 27017889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait.
    Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel robot-assisted training approach for improving gait symmetry after stroke.
    Zadravec M; Olensek A; Rudolf M; Bizovicar N; Goljar N; Matjacic Z
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():222-227. PubMed ID: 28813822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.
    Chen G; Qi P; Guo Z; Yu H
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.