These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28504943)

  • 21. Controlling patient participation during robot-assisted gait training.
    Koenig A; Omlin X; Bergmann J; Zimmerli L; Bolliger M; Müller F; Riener R
    J Neuroeng Rehabil; 2011 Mar; 8():14. PubMed ID: 21429200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An arm for a leg: Adapting a robotic arm for gait rehabilitation.
    Franchi G; Viereck U; Platt R; Yen SC; Hasson CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3929-32. PubMed ID: 26737153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results.
    Molteni F; Gasperini G; Gaffuri M; Colombo M; Giovanzana C; Lorenzon C; Farina N; Cannaviello G; Scarano S; Proserpio D; Liberali D; Guanziroli E
    Eur J Phys Rehabil Med; 2017 Oct; 53(5):676-684. PubMed ID: 28118698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Comprehensive Analysis of Sensorimotor Mechanisms of Inter-Leg Coordination in Gait Using the Variable Stiffness Treadmill: Physiological Insights for Improved Robot-Assisted Gait Therapy.
    Skidmore J; Artemiadis P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():28-33. PubMed ID: 31374602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A brain-controlled lower-limb exoskeleton for human gait training.
    Liu D; Chen W; Pei Z; Wang J
    Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A lower limb exoskeleton control system based on steady state visual evoked potentials.
    Kwak NS; Müller KR; Lee SW
    J Neural Eng; 2015 Oct; 12(5):056009. PubMed ID: 26291321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Open-Structure Treadmill Gait Trainer: From Research to Application.
    Li J; Chen D; Fan Y
    J Healthc Eng; 2017; 2017():9053630. PubMed ID: 29065662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional electrical stimulation based on a pelvis support robot for gait rehabilitation of hemiplegic patients after stroke.
    Ye J; Nakashima Y; Zhang B; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3098-101. PubMed ID: 25570646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.
    Tsukahara A; Hasegawa Y; Eguchi K; Sankai Y
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):308-18. PubMed ID: 25350933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Importance of Haptics in Generating Exoskeleton Gait Trajectory Using Alternate Motor Inputs.
    Karunakaran KK; Abbruzzese KM; Xu H; Foulds RA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2328-2335. PubMed ID: 28715331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of Lower-Limb Robotics to Enhance Practice and Participation in Individuals With Neurological Conditions.
    Jayaraman A; Burt S; Rymer WZ
    Pediatr Phys Ther; 2017 Jul; 29 Suppl 3():S48-S56. PubMed ID: 28654477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of biomechanical data to determine the degree of users participation during robotic-assisted gait rehabilitation.
    Collantes I; Asin G; Moreno JC; Pons JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4855-8. PubMed ID: 23367015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training.
    Koenig A; Novak D; Omlin X; Pulfer M; Perreault E; Zimmerli L; Mihelj M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):453-64. PubMed ID: 21827971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parametric generation of three-dimensional gait for robot-assisted rehabilitation.
    Shi D; Zhang W; Ding X; Sun L
    Biol Open; 2020 Mar; 9(3):. PubMed ID: 32001490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HYBRID: Ambulatory Robotic Gait Trainer with Movement Induction and Partial Weight Support.
    Urendes E; Asín-Prieto G; Ceres R; García-Carmona R; Raya R; L Pons J
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biofeedback for robotic gait rehabilitation.
    Lünenburger L; Colombo G; Riener R
    J Neuroeng Rehabil; 2007 Jan; 4():1. PubMed ID: 17244363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.