BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28505251)

  • 1. False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing.
    Xiao J; Cao H; Chen J
    Bioinformatics; 2017 Sep; 33(18):2873-2881. PubMed ID: 28505251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A distance-based approach for testing the mediation effect of the human microbiome.
    Zhang J; Wei Z; Chen J
    Bioinformatics; 2018 Jun; 34(11):1875-1883. PubMed ID: 29346509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-stage microbial association mapping framework with advanced FDR control.
    Hu J; Koh H; He L; Liu M; Blaser MJ; Li H
    Microbiome; 2018 Jul; 6(1):131. PubMed ID: 30045760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny-guided microbiome OTU-specific association test (POST).
    Huang C; Callahan BJ; Wu MC; Holloway ST; Brochu H; Lu W; Peng X; Tzeng JY
    Microbiome; 2022 Jun; 10(1):86. PubMed ID: 35668471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general framework for association analysis of microbial communities on a taxonomic tree.
    Tang ZZ; Chen G; Alekseyenko AV; Li H
    Bioinformatics; 2017 May; 33(9):1278-1285. PubMed ID: 28003264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic tree-based microbiome association test.
    Kim KJ; Park J; Park SC; Won S
    Bioinformatics; 2020 Feb; 36(4):1000-1006. PubMed ID: 31504188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies.
    Thorsen J; Brejnrod A; Mortensen M; Rasmussen MA; Stokholm J; Al-Soud WA; Sørensen S; Bisgaard H; Waage J
    Microbiome; 2016 Nov; 4(1):62. PubMed ID: 27884206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation and differential abundance analysis of microbiome data incorporating phylogeny.
    Zhou C; Zhao H; Wang T
    Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating Phylogenetic Information in Microbiome Differential Abundance Studies Has No Effect on Detection Power and FDR Control.
    Bichat A; Plassais J; Ambroise C; Mariadassou M
    Front Microbiol; 2020; 11():649. PubMed ID: 32351481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An informative approach on differential abundance analysis for time-course metagenomic sequencing data.
    Luo D; Ziebell S; An L
    Bioinformatics; 2017 May; 33(9):1286-1292. PubMed ID: 28057680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly adaptive microbiome-based association test for survival traits.
    Koh H; Livanos AE; Blaser MJ; Li H
    BMC Genomics; 2018 Mar; 19(1):210. PubMed ID: 29558893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An empirical Bayes approach to normalization and differential abundance testing for microbiome data.
    Liu T; Zhao H; Wang T
    BMC Bioinformatics; 2020 Jun; 21(1):225. PubMed ID: 32493208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes.
    Earl JP; Adappa ND; Krol J; Bhat AS; Balashov S; Ehrlich RL; Palmer JN; Workman AD; Blasetti M; Sen B; Hammond J; Cohen NA; Ehrlich GD; Mell JC
    Microbiome; 2018 Oct; 6(1):190. PubMed ID: 30352611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An omnibus test for differential distribution analysis of microbiome sequencing data.
    Chen J; King E; Deek R; Wei Z; Yu Y; Grill D; Ballman K; Stegle O
    Bioinformatics; 2018 Feb; 34(4):643-651. PubMed ID: 29040451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NGSphy: phylogenomic simulation of next-generation sequencing data.
    Escalona M; Rocha S; Posada D
    Bioinformatics; 2018 Jul; 34(14):2506-2507. PubMed ID: 29534152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny-based classification of microbial communities.
    Tanaseichuk O; Borneman J; Jiang T
    Bioinformatics; 2014 Feb; 30(4):449-56. PubMed ID: 24369151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instruction of microbiome taxonomic profiling based on 16S rRNA sequencing.
    Kim H; Kim S; Jung S
    J Microbiol; 2020 Mar; 58(3):193-205. PubMed ID: 32108315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel deep learning method for predictive modeling of microbiome data.
    Wang Y; Bhattacharya T; Jiang Y; Qin X; Wang Y; Liu Y; Saykin AJ; Chen L
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32406914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.
    Fouquier J; Rideout JR; Bolyen E; Chase J; Shiffer A; McDonald D; Knight R; Caporaso JG; Kelley ST
    Microbiome; 2016 Feb; 4():11. PubMed ID: 26905735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing and Analyzing Human Microbiome Data.
    Zhu X; Wang J; Reyes-Gibby C; Shete S
    Methods Mol Biol; 2017; 1666():649-677. PubMed ID: 28980268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.