These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 28505372)
1. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state. Osterman IA; Khabibullina NF; Komarova ES; Kasatsky P; Kartsev VG; Bogdanov AA; Dontsova OA; Konevega AL; Sergiev PV; Polikanov YS Nucleic Acids Res; 2017 Jul; 45(12):7507-7514. PubMed ID: 28505372 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. Poulsen SM; Kofoed C; Vester B J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288 [TBL] [Abstract][Full Text] [Related]
3. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome. Mondal S; Pathak BK; Ray S; Barat C PLoS One; 2014; 9(7):e101293. PubMed ID: 25000563 [TBL] [Abstract][Full Text] [Related]
4. Peptidyl transferase antibiotics perturb the relative positioning of the 3'-terminal adenosine of P/P'-site-bound tRNA and 23S rRNA in the ribosome. Kirillov SV; Porse BT; Garrett RA RNA; 1999 Aug; 5(8):1003-13. PubMed ID: 10445875 [TBL] [Abstract][Full Text] [Related]
5. Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5 S rRNA. Khaitovich P; Mankin AS J Mol Biol; 1999 Sep; 291(5):1025-34. PubMed ID: 10518940 [TBL] [Abstract][Full Text] [Related]
6. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome. Poulsen SM; Karlsson M; Johansson LB; Vester B Mol Microbiol; 2001 Sep; 41(5):1091-9. PubMed ID: 11555289 [TBL] [Abstract][Full Text] [Related]
7. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. Harms JM; Schlünzen F; Fucini P; Bartels H; Yonath A BMC Biol; 2004 Apr; 2():4. PubMed ID: 15059283 [TBL] [Abstract][Full Text] [Related]
8. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Wilson DN; Schluenzen F; Harms JM; Starosta AL; Connell SR; Fucini P Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13339-44. PubMed ID: 18757750 [TBL] [Abstract][Full Text] [Related]
9. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. Green R; Switzer C; Noller HF Science; 1998 Apr; 280(5361):286-9. PubMed ID: 9535658 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Schlünzen F; Pyetan E; Fucini P; Yonath A; Harms JM Mol Microbiol; 2004 Dec; 54(5):1287-94. PubMed ID: 15554968 [TBL] [Abstract][Full Text] [Related]
12. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Voorhees RM; Weixlbaumer A; Loakes D; Kelley AC; Ramakrishnan V Nat Struct Mol Biol; 2009 May; 16(5):528-33. PubMed ID: 19363482 [TBL] [Abstract][Full Text] [Related]
13. 23S rRNA positions essential for tRNA binding in ribosomal functional sites. Bocchetta M; Xiong L; Mankin AS Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3525-30. PubMed ID: 9520399 [TBL] [Abstract][Full Text] [Related]
14. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2'-OH at A2451 of 23S rRNA. Erlacher MD; Lang K; Wotzel B; Rieder R; Micura R; Polacek N J Am Chem Soc; 2006 Apr; 128(13):4453-9. PubMed ID: 16569023 [TBL] [Abstract][Full Text] [Related]
15. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. Green R; Samaha RR; Noller HF J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969 [TBL] [Abstract][Full Text] [Related]
16. On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit. Steitz TA FEBS Lett; 2005 Feb; 579(4):955-8. PubMed ID: 15680981 [TBL] [Abstract][Full Text] [Related]
17. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Polacek N; Gomez MJ; Ito K; Xiong L; Nakamura Y; Mankin A Mol Cell; 2003 Jan; 11(1):103-12. PubMed ID: 12535525 [TBL] [Abstract][Full Text] [Related]
18. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. Svetlov MS; Plessa E; Chen CW; Bougas A; Krokidis MG; Dinos GP; Polikanov YS RNA; 2019 May; 25(5):600-606. PubMed ID: 30733327 [TBL] [Abstract][Full Text] [Related]
19. Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. Marks J; Kannan K; Roncase EJ; Klepacki D; Kefi A; Orelle C; Vázquez-Laslop N; Mankin AS Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12150-12155. PubMed ID: 27791002 [TBL] [Abstract][Full Text] [Related]
20. Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes. Porse BT; Kirillov SV; Awayez MJ; Ottenheijm HC; Garrett RA Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9003-8. PubMed ID: 10430885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]