BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 28505372)

  • 1. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state.
    Osterman IA; Khabibullina NF; Komarova ES; Kasatsky P; Kartsev VG; Bogdanov AA; Dontsova OA; Konevega AL; Sergiev PV; Polikanov YS
    Nucleic Acids Res; 2017 Jul; 45(12):7507-7514. PubMed ID: 28505372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome.
    Mondal S; Pathak BK; Ray S; Barat C
    PLoS One; 2014; 9(7):e101293. PubMed ID: 25000563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptidyl transferase antibiotics perturb the relative positioning of the 3'-terminal adenosine of P/P'-site-bound tRNA and 23S rRNA in the ribosome.
    Kirillov SV; Porse BT; Garrett RA
    RNA; 1999 Aug; 5(8):1003-13. PubMed ID: 10445875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5 S rRNA.
    Khaitovich P; Mankin AS
    J Mol Biol; 1999 Sep; 291(5):1025-34. PubMed ID: 10518940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome.
    Poulsen SM; Karlsson M; Johansson LB; Vester B
    Mol Microbiol; 2001 Sep; 41(5):1091-9. PubMed ID: 11555289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin.
    Harms JM; Schlünzen F; Fucini P; Bartels H; Yonath A
    BMC Biol; 2004 Apr; 2():4. PubMed ID: 15059283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning.
    Wilson DN; Schluenzen F; Harms JM; Starosta AL; Connell SR; Fucini P
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13339-44. PubMed ID: 18757750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA.
    Green R; Switzer C; Noller HF
    Science; 1998 Apr; 280(5361):286-9. PubMed ID: 9535658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptidyl transferase and beyond.
    Wower J; Wower IK; Kirillov SV; Rosen KV; Hixson SS; Zimmermann RA
    Biochem Cell Biol; 1995; 73(11-12):1041-7. PubMed ID: 8722019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin.
    Schlünzen F; Pyetan E; Fucini P; Yonath A; Harms JM
    Mol Microbiol; 2004 Dec; 54(5):1287-94. PubMed ID: 15554968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome.
    Voorhees RM; Weixlbaumer A; Loakes D; Kelley AC; Ramakrishnan V
    Nat Struct Mol Biol; 2009 May; 16(5):528-33. PubMed ID: 19363482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 23S rRNA positions essential for tRNA binding in ribosomal functional sites.
    Bocchetta M; Xiong L; Mankin AS
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3525-30. PubMed ID: 9520399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2'-OH at A2451 of 23S rRNA.
    Erlacher MD; Lang K; Wotzel B; Rieder R; Micura R; Polacek N
    J Am Chem Soc; 2006 Apr; 128(13):4453-9. PubMed ID: 16569023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome.
    Green R; Samaha RR; Noller HF
    J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit.
    Steitz TA
    FEBS Lett; 2005 Feb; 579(4):955-8. PubMed ID: 15680981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination.
    Polacek N; Gomez MJ; Ito K; Xiong L; Nakamura Y; Mankin A
    Mol Cell; 2003 Jan; 11(1):103-12. PubMed ID: 12535525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition.
    Svetlov MS; Plessa E; Chen CW; Bougas A; Krokidis MG; Dinos GP; Polikanov YS
    RNA; 2019 May; 25(5):600-606. PubMed ID: 30733327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center.
    Marks J; Kannan K; Roncase EJ; Klepacki D; Kefi A; Orelle C; Vázquez-Laslop N; Mankin AS
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12150-12155. PubMed ID: 27791002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes.
    Porse BT; Kirillov SV; Awayez MJ; Ottenheijm HC; Garrett RA
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9003-8. PubMed ID: 10430885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.