These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 28505402)
21. Schottky Barrier Height of Pd/MoS Dong H; Gong C; Addou R; McDonnell S; Azcatl A; Qin X; Wang W; Wang W; Hinkle CL; Wallace RM ACS Appl Mater Interfaces; 2017 Nov; 9(44):38977-38983. PubMed ID: 29035026 [TBL] [Abstract][Full Text] [Related]
22. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes. Sarker BK; Kang N; Khondaker SI Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657 [TBL] [Abstract][Full Text] [Related]
23. Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts. Yoon HS; Joe HE; Jun Kim S; Lee HS; Im S; Min BK; Jun SC Sci Rep; 2015 May; 5():10440. PubMed ID: 25990304 [TBL] [Abstract][Full Text] [Related]
24. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS Kim GS; Kim SH; Park J; Han KH; Kim J; Yu HY ACS Nano; 2018 Jun; 12(6):6292-6300. PubMed ID: 29851473 [TBL] [Abstract][Full Text] [Related]
25. Flexible carbon nanotube Schottky diode and its integrated circuit applications. Lee Y; Jung H; Choi B; Yoon J; Yoo HB; Kim HJ; Park GH; Kim DM; Kim DH; Kang MH; Choi SJ RSC Adv; 2019 Jul; 9(38):22124-22128. PubMed ID: 35518852 [TBL] [Abstract][Full Text] [Related]
26. Schottky barrier height engineering on MoS Choi D; Jeon J; Park TE; Ju BK; Lee KY Discov Nano; 2023 May; 18(1):80. PubMed ID: 37382714 [TBL] [Abstract][Full Text] [Related]
27. Controllable Schottky barriers between MoS2 and permalloy. Wang W; Liu Y; Tang L; Jin Y; Zhao T; Xiu F Sci Rep; 2014 Nov; 4():6928. PubMed ID: 25370911 [TBL] [Abstract][Full Text] [Related]
28. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors. Xia J; Dong G; Tian B; Yan Q; Zhang H; Liang X; Peng L Nanoscale; 2016 May; 8(19):9988-96. PubMed ID: 27121370 [TBL] [Abstract][Full Text] [Related]
29. Tuning the Schottky rectification in graphene-hexagonal boron nitride-molybdenum disulfide heterostructure. Liu B; Zhao YQ; Yu ZL; Wang LZ; Cai MQ J Colloid Interface Sci; 2018 Mar; 513():677-683. PubMed ID: 29216575 [TBL] [Abstract][Full Text] [Related]
30. Processing Strategies for High-Performance Schottky Contacts on n-Type Oxide Semiconductors: Insights from In Michel J; Splith D; Rombach J; Papadogianni A; Berthold T; Krischok S; Grundmann M; Bierwagen O; von Wenckstern H; Himmerlich M ACS Appl Mater Interfaces; 2019 Jul; 11(30):27073-27087. PubMed ID: 31269791 [TBL] [Abstract][Full Text] [Related]
31. Efficient Gate Modulation in a Screening-Engineered MoS Phan TL; Vu QA; Kim YR; Shin YS; Lee IM; Tran MD; Jiang J; Luong DH; Liao L; Lee YH; Yu WJ ACS Appl Mater Interfaces; 2019 Jul; 11(28):25516-25523. PubMed ID: 31264836 [TBL] [Abstract][Full Text] [Related]
32. Role of Schottky Barrier and Access Resistance in Organic Field-Effect Transistors. Wang Q; Jiang S; Zhang B; Shin EY; Noh YY; Xu Y; Shi Y; Li Y J Phys Chem Lett; 2020 Feb; 11(4):1466-1472. PubMed ID: 32013442 [TBL] [Abstract][Full Text] [Related]
33. Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2. Kaushik N; Karmakar D; Nipane A; Karande S; Lodha S ACS Appl Mater Interfaces; 2016 Jan; 8(1):256-63. PubMed ID: 26649572 [TBL] [Abstract][Full Text] [Related]
34. Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS Moon BH; Han GH; Kim H; Choi H; Bae JJ; Kim J; Jin Y; Jeong HY; Joo MK; Lee YH; Lim SC ACS Appl Mater Interfaces; 2017 Mar; 9(12):11240-11246. PubMed ID: 28266221 [TBL] [Abstract][Full Text] [Related]
35. Investigation of the interfaces in Schottky diodes using equivalent circuit models. Yim C; McEvoy N; Kim HY; Rezvani E; Duesberg GS ACS Appl Mater Interfaces; 2013 Aug; 5(15):6951-8. PubMed ID: 23767937 [TBL] [Abstract][Full Text] [Related]
36. Graphene as a Schottky Barrier Contact to AlGaN/GaN Heterostructures. Dub M; Sai P; Przewłoka A; Krajewska A; Sakowicz M; Prystawko P; Kacperski J; Pasternak I; Cywiński G; But D; Knap W; Rumyantsev S Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32957632 [TBL] [Abstract][Full Text] [Related]
37. Highly Efficient Experimental Approach to Evaluate Metal to 2D Semiconductor Interfaces in Vertical Diodes with Asymmetric Metal Contacts. Kim S; Shin DH; Kim YS; Lee IH; Lee CW; Seo S; Jung S ACS Appl Mater Interfaces; 2021 Jun; 13(23):27705-27712. PubMed ID: 34082527 [TBL] [Abstract][Full Text] [Related]
38. Analysis of Schottky Contact Formation in Coplanar Au/ZnO/Al Nanogap Radio Frequency Diodes Processed from Solution at Low Temperature. Semple J; Rossbauer S; Anthopoulos TD ACS Appl Mater Interfaces; 2016 Sep; 8(35):23167-74. PubMed ID: 27530144 [TBL] [Abstract][Full Text] [Related]
39. Anomalous Schottky barriers and contact band-to-band tunneling in carbon nanotube transistors. Perello DJ; Chulim S; Chae SJ; Lee I; Kim MJ; Lee YH; Yun M ACS Nano; 2010 Jun; 4(6):3103-8. PubMed ID: 20509663 [TBL] [Abstract][Full Text] [Related]
40. Development and Modelling of Gallium Nitride Based Lateral Schottky Barrier Diodes with Anode Recesses for mmWave and THz Applications. Alathbah M Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]