These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 28505455)
1. Interaction of Multiple Particles with a Solidification Front: From Compacted Particle Layer to Particle Trapping. Saint-Michel B; Georgelin M; Deville S; Pocheau A Langmuir; 2017 Jun; 33(23):5617-5627. PubMed ID: 28505455 [TBL] [Abstract][Full Text] [Related]
2. Boundary-induced inhomogeneity of particle layers in the solidification of suspensions. Saint-Michel B; Georgelin M; Deville S; Pocheau A Phys Rev E; 2019 May; 99(5-1):052601. PubMed ID: 31212498 [TBL] [Abstract][Full Text] [Related]
3. Wall friction and Janssen effect in the solidification of suspensions. Saint-Michel B; Georgelin M; Deville S; Pocheau A Soft Matter; 2018 Nov; 14(46):9498-9510. PubMed ID: 30452058 [TBL] [Abstract][Full Text] [Related]
4. The behavior of radiogenic particles at solidification fronts. Arias FJ; Parks GT J Environ Radioact; 2017 Feb; 167():86-91. PubMed ID: 28007441 [TBL] [Abstract][Full Text] [Related]
5. Multiple objects interacting with a solidification front. Tyagi S; Monteux C; Deville S Sci Rep; 2021 Feb; 11(1):3513. PubMed ID: 33568679 [TBL] [Abstract][Full Text] [Related]
6. Transport dynamics of charged colloidal particles during directional drying of suspensions in a confined microchannel. Sui J Phys Rev E; 2019 Jun; 99(6-1):062606. PubMed ID: 31330699 [TBL] [Abstract][Full Text] [Related]
7. Five-dimensional imaging of freezing emulsions with solute effects. Dedovets D; Monteux C; Deville S Science; 2018 Apr; 360(6386):303-306. PubMed ID: 29674590 [TBL] [Abstract][Full Text] [Related]
8. Phenomena at the advancing ice-liquid interface: solutes, particles and biological cells. Körber C Q Rev Biophys; 1988 May; 21(2):229-98. PubMed ID: 3043537 [TBL] [Abstract][Full Text] [Related]
9. Modeling the Filler Phase Interaction with Solidification Front in Al(TiC) Composite Produced by the In Situ Method. Kalisz D; Żak PL; Dan O Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947160 [TBL] [Abstract][Full Text] [Related]
10. Migration Behavior of Inclusions at the Solidification Front in Oxide Metallurgy. Yan C; Wang F; Mo W; Xiao P; Zhang Q Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374670 [TBL] [Abstract][Full Text] [Related]
11. Solidification in soft-core fluids: Disordered solids from fast solidification fronts. Archer AJ; Walters MC; Thiele U; Knobloch E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042404. PubMed ID: 25375507 [TBL] [Abstract][Full Text] [Related]
12. Axisymmetric shapes and forces resulting from the interaction of a particle with a solidifying interface. Hadji L Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041404. PubMed ID: 12443204 [TBL] [Abstract][Full Text] [Related]
13. Solute effects on the dynamics and deformation of emulsion droplets during freezing. Tyagi S; Monteux C; Deville S Soft Matter; 2022 Jun; 18(21):4178-4188. PubMed ID: 35593383 [TBL] [Abstract][Full Text] [Related]
14. Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids. Archer AJ; Robbins MJ; Thiele U; Knobloch E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031603. PubMed ID: 23030925 [TBL] [Abstract][Full Text] [Related]
16. Cavitation-induced particle engulfment via enhancing particle-interface interaction in solidification. Zhao K; Li X; Liu X; Guo E; Kang H; Hao Z; Li J; Zhang Y; Chen Z; Wang T Ultrason Sonochem; 2024 Feb; 103():106801. PubMed ID: 38364485 [TBL] [Abstract][Full Text] [Related]
17. Particle-bubble interaction inside a Hele-Shaw cell. Zhang P; Mines JM; Lee S; Jung S Phys Rev E; 2016 Aug; 94(2-1):023112. PubMed ID: 27627397 [TBL] [Abstract][Full Text] [Related]
18. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions. Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897 [TBL] [Abstract][Full Text] [Related]
19. Time evolution of steep diffusion fronts in highly viscous aerosol particles measured with Mie resonance spectroscopy. Bastelberger S; Krieger UK; Luo BP; Peter T J Chem Phys; 2018 Dec; 149(24):244506. PubMed ID: 30599702 [TBL] [Abstract][Full Text] [Related]
20. Flow of condensed particles around a packing front visualized by drying colloidal suspensions on a tilted substrate. Mizuguchi T; Inasawa S Soft Matter; 2019 May; 15(19):4019-4025. PubMed ID: 31041983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]