These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 28505583)
21. Pathogen-informed breeding for crop disease resistance. Li Q; Wang B; Yu J; Dou D J Integr Plant Biol; 2021 Feb; 63(2):305-311. PubMed ID: 33095498 [TBL] [Abstract][Full Text] [Related]
22. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. Deng Y; Ning Y; Yang DL; Zhai K; Wang GL; He Z Mol Plant; 2020 Oct; 13(10):1402-1419. PubMed ID: 32979566 [TBL] [Abstract][Full Text] [Related]
23. Proteinaceous effector discovery and characterization in filamentous plant pathogens. Kanja C; Hammond-Kosack KE Mol Plant Pathol; 2020 Oct; 21(10):1353-1376. PubMed ID: 32767620 [TBL] [Abstract][Full Text] [Related]
24. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. Wally O; Punja ZK GM Crops; 2010; 1(4):199-206. PubMed ID: 21844674 [TBL] [Abstract][Full Text] [Related]
25. Engineering resistance against geminiviruses: A review of suppressed natural defenses and the use of RNAi and the CRISPR/Cas system. Loriato VAP; Martins LGC; Euclydes NC; Reis PAB; Duarte CEM; Fontes EPB Plant Sci; 2020 Mar; 292():110410. PubMed ID: 32005374 [TBL] [Abstract][Full Text] [Related]
26. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Leach JE; Vera Cruz CM; Bai J; Leung H Annu Rev Phytopathol; 2001; 39():187-224. PubMed ID: 11701864 [TBL] [Abstract][Full Text] [Related]
27. Engineering plant disease resistance based on TAL effectors. Schornack S; Moscou MJ; Ward ER; Horvath DM Annu Rev Phytopathol; 2013; 51():383-406. PubMed ID: 23725472 [TBL] [Abstract][Full Text] [Related]
28. Exploiting pathogens' tricks of the trade for engineering of plant disease resistance: challenges and opportunities. Grant MR; Kazan K; Manners JM Microb Biotechnol; 2013 May; 6(3):212-22. PubMed ID: 23279915 [TBL] [Abstract][Full Text] [Related]
29. Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Bus VG; Rikkerink EH; Caffier V; Durel CE; Plummer KM Annu Rev Phytopathol; 2011; 49():391-413. PubMed ID: 21599495 [TBL] [Abstract][Full Text] [Related]
30. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. Tang D; Wang G; Zhou JM Plant Cell; 2017 Apr; 29(4):618-637. PubMed ID: 28302675 [TBL] [Abstract][Full Text] [Related]
36. Trans-crop applications of atypical R genes for multipathogen resistance. Sun P; Han X; Milne RJ; Li G Trends Plant Sci; 2024 Oct; 29(10):1103-1112. PubMed ID: 38811244 [TBL] [Abstract][Full Text] [Related]
37. Boosting innate immunity to sustainably control diseases in crops. Nicaise V Curr Opin Virol; 2017 Oct; 26():112-119. PubMed ID: 28802707 [TBL] [Abstract][Full Text] [Related]
38. Plant microRNAs: Front line players against invading pathogens. Islam W; Qasim M; Noman A; Adnan M; Tayyab M; Farooq TH; Wei H; Wang L Microb Pathog; 2018 May; 118():9-17. PubMed ID: 29524548 [TBL] [Abstract][Full Text] [Related]
39. Analysis of early host responses for asymptomatic disease detection and management of specialty crops. Dandekar AM; Martinelli F; Davis CE; Bhushan A; Zhao W; Fiehn O; Skogerson K; Wohlgemuth G; D'Souza R; Roy S; Reagan RL; Lin D; Cary R; Pardington P; Gupta G Crit Rev Immunol; 2010; 30(3):277-89. PubMed ID: 20370635 [TBL] [Abstract][Full Text] [Related]
40. Immunity-Associated Programmed Cell Death as a Tool for the Identification of Genes Essential for Plant Innate Immunity. Zhou B; Zeng L Methods Mol Biol; 2018; 1743():51-63. PubMed ID: 29332285 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]