BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 28505599)

  • 1. A new method for quantifying the performance of EEG blind source separation algorithms by referencing a simultaneously recorded ECoG signal.
    Oosugi N; Kitajo K; Hasegawa N; Nagasaka Y; Okanoya K; Fujii N
    Neural Netw; 2017 Sep; 93():1-6. PubMed ID: 28505599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case.
    Romero S; Mañanas MA; Barbanoj MJ
    Comput Biol Med; 2008 Mar; 38(3):348-60. PubMed ID: 18222418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistency of the blind source separation computed with five common algorithms for magnetoencephalogram background activity.
    Escudero J; Hornero R; Abásolo D
    Med Eng Phys; 2010 Dec; 32(10):1137-44. PubMed ID: 20833095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Research on the methods for electroencephalogram feature extraction based on blind source separation].
    Wang J; Zhang H; Wang L; Xu G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1195-201. PubMed ID: 25868229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of EEG noise and artifact using blind source separation.
    Fitzgibbon SP; Powers DM; Pope KJ; Clark CR
    J Clin Neurophysiol; 2007 Jun; 24(3):232-43. PubMed ID: 17545826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of deep brain activity with scalp and subdural EEG.
    Fahimi Hnazaee M; Wittevrongel B; Khachatryan E; Libert A; Carrette E; Dauwe I; Meurs A; Boon P; Van Roost D; Van Hulle MM
    Neuroimage; 2020 Dec; 223():117344. PubMed ID: 32898677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: implications for single-subject and group analyses.
    Lio G; Boulinguez P
    Neuroimage; 2013 Feb; 67():137-52. PubMed ID: 23194817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of SOBI components from high-density EEG.
    Tang AC; Sutherland MT; McKinney CJ
    Neuroimage; 2005 Apr; 25(2):539-53. PubMed ID: 15784433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced mu rhythm extraction using blind source separation and wavelet transform.
    Ng SC; Raveendran P
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2024-34. PubMed ID: 19457744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removing muscle and eye artifacts using blind source separation techniques in ictal EEG source imaging.
    Hallez H; De Vos M; Vanrumste B; Van Hese P; Assecondi S; Van Laere K; Dupont P; Van Paesschen W; Van Huffel S; Lemahieu I
    Clin Neurophysiol; 2009 Jul; 120(7):1262-72. PubMed ID: 19539525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiospectral Decomposition of Multi-subject EEG: Evaluating Blind Source Separation Algorithms on Real and Realistic Simulated Data.
    Bridwell DA; Rachakonda S; Silva RF; Pearlson GD; Calhoun VD
    Brain Topogr; 2018 Jan; 31(1):47-61. PubMed ID: 26909688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated protocol for evaluation of electromagnetic component separation (APECS): Application of a framework for evaluating statistical methods of blink extraction from multichannel EEG.
    Frank RM; Frishkoff GA
    Clin Neurophysiol; 2007 Jan; 118(1):80-97. PubMed ID: 17064960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second order blind identification on the cerebral cortex.
    Wheland D; Pantazis D
    J Neurosci Methods; 2014 Feb; 223():40-9. PubMed ID: 24316295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-step blind source separation approach for the attenuation of artifacts in mobile high-density electroencephalography data.
    Zhao M; Bonassi G; Guarnieri R; Pelosin E; Nieuwboer A; Avanzino L; Mantini D
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34874319
    [No Abstract]   [Full Text] [Related]  

  • 15. PWC-ICA: A Method for Stationary Ordered Blind Source Separation with Application to EEG.
    Ball K; Bigdely-Shamlo N; Mullen T; Robbins K
    Comput Intell Neurosci; 2016; 2016():9754813. PubMed ID: 27340397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved artefact removal from EEG using Canonical Correlation Analysis and spectral slope.
    Janani AS; Grummett TS; Lewis TW; Fitzgibbon SP; Whitham EM; DelosAngeles D; Bakhshayesh H; Willoughby JO; Pope KJ
    J Neurosci Methods; 2018 Mar; 298():1-15. PubMed ID: 29408174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping Brain Activity with Electrocorticography: Resolution Properties and Robustness of Inverse Solutions.
    Todaro C; Marzetti L; Valdés Sosa PA; Valdés-Hernandez PA; Pizzella V
    Brain Topogr; 2019 Jul; 32(4):583-598. PubMed ID: 29362974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized component filtering for electroencephalogram artifact rejection.
    DelPozo-Baños M; Weidemann CT
    Psychophysiology; 2017 Apr; 54(4):608-619. PubMed ID: 28112387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the interpretation of ictal scalp EEG: BSS-CCA algorithm for muscle artifact removal.
    Vergult A; De Clercq W; Palmini A; Vanrumste B; Dupont P; Van Huffel S; Van Paesschen W
    Epilepsia; 2007 May; 48(5):950-8. PubMed ID: 17381439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation.
    Escudero J; Hornero R; Abásolo D; Fernández A
    Ann Biomed Eng; 2011 Aug; 39(8):2274-86. PubMed ID: 21509634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.