These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 28505712)

  • 1. Sugar export limits size of conifer needles.
    Rademaker H; Zwieniecki MA; Bohr T; Jensen KH
    Phys Rev E; 2017 Apr; 95(4-1):042402. PubMed ID: 28505712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental conditions, not sugar export efficiency, limit the length of conifer leaves.
    Han X; Turgeon R; Schulz A; Liesche J
    Tree Physiol; 2019 Feb; 39(2):312-319. PubMed ID: 29850887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of sugar export from long conifer needles.
    Liesche J; Vincent C; Han X; Zwieniecki M; Schulz A; Gao C; Bravard R; Marker S; Bohr T
    New Phytol; 2021 Jun; 230(5):1911-1924. PubMed ID: 33638181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate measurement of optical properties of narrow leaves and conifer needles with a typical integrating sphere and spectroradiometer.
    Noda HM; Motohka T; Murakami K; Muraoka H; Nasahara KN
    Plant Cell Environ; 2013 Oct; 36(10):1903-9. PubMed ID: 23509914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling of phloem structure and optimality of photoassimilate transport in conifer needles.
    Ronellenfitsch H; Liesche J; Jensen KH; Holbrook NM; Schulz A; Katifori E
    Proc Biol Sci; 2015 Feb; 282(1801):20141863. PubMed ID: 25567645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical limits to leaf size in tall trees.
    Jensen KH; Zwieniecki MA
    Phys Rev Lett; 2013 Jan; 110(1):018104. PubMed ID: 23383844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf-trait variation explained by the hypothesis that plants maximize their canopy carbon export over the lifespan of leaves.
    McMurtrie RE; Dewar RC
    Tree Physiol; 2011 Sep; 31(9):1007-23. PubMed ID: 21646281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The enigma of effective path length for (18) O enrichment in leaf water of conifers.
    Roden J; Kahmen A; Buchmann N; Siegwolf R
    Plant Cell Environ; 2015 Dec; 38(12):2551-65. PubMed ID: 26037826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permineralized conifer-like leaves from the Jurassic of Patagonia (Argentina) and its paleoenvironmental implications.
    Fueyo GMD; Gnaedinger SC; Diaz MAL; Carrizo MA
    An Acad Bras Cienc; 2019; 91Suppl. 2(Suppl. 2):e20180363. PubMed ID: 31090798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torus-margo pits help conifers compete with angiosperms.
    Pittermann J; Sperry JS; Hacke UG; Wheeler JK; Sikkema EH
    Science; 2005 Dec; 310(5756):1924. PubMed ID: 16373568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An annual pattern of native embolism in upper branches of four tall conifer species.
    McCulloh KA; Johnson DM; Meinzer FC; Lachenbruch B
    Am J Bot; 2011 Jun; 98(6):1007-15. PubMed ID: 21613067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst).
    Paljakka T; Jyske T; Lintunen A; Aaltonen H; Nikinmaa E; Hölttä T
    Plant Cell Environ; 2017 Oct; 40(10):2160-2173. PubMed ID: 28671720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip.
    Comtet J; Jensen KH; Turgeon R; Stroock AD; Hosoi AE
    Nat Plants; 2017 Mar; 3():17032. PubMed ID: 28319082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How are leaves plumbed inside a branch? Differences in leaf-to-leaf hydraulic sectoriality among six temperate tree species.
    Orians CM; Smith SD; Sack L
    J Exp Bot; 2005 Aug; 56(418):2267-73. PubMed ID: 15983007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sanio's laws revisited. Size-dependent changes in the xylem architecture of trees.
    Mencuccini M; Hölttä T; Petit G; Magnani F
    Ecol Lett; 2007 Nov; 10(11):1084-93. PubMed ID: 17850336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of Inner Bark and Leaf Osmolality.
    Paljakka T; Lintunen A; Salmon Y; Hölttä T
    Methods Mol Biol; 2019; 2014():135-142. PubMed ID: 31197792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why does leaf nitrogen decline within tree canopies less rapidly than light? An explanation from optimization subject to a lower bound on leaf mass per area.
    Dewar RC; Tarvainen L; Parker K; Wallin G; McMurtrie RE
    Tree Physiol; 2012 May; 32(5):520-34. PubMed ID: 22619074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sucrose transporters and plasmodesmal regulation in passive phloem loading.
    Liesche J
    J Integr Plant Biol; 2017 May; 59(5):311-321. PubMed ID: 28429873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintenance of carbohydrate transport in tall trees.
    Savage JA; Beecher SD; Clerx L; Gersony JT; Knoblauch J; Losada JM; Jensen KH; Knoblauch M; Holbrook NM
    Nat Plants; 2017 Dec; 3(12):965-972. PubMed ID: 29209083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.