These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28505739)

  • 1. Avalanches dynamics in reaction fronts in disordered flows.
    Chevalier T; Dubey AK; Atis S; Rosso A; Salin D; Talon L
    Phys Rev E; 2017 Apr; 95(4-1):042210. PubMed ID: 28505739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Evidence for Three Universality Classes for Reaction Fronts in Disordered Flows.
    Atis S; Dubey AK; Salin D; Talon L; Le Doussal P; Wiese KJ
    Phys Rev Lett; 2015 Jun; 114(23):234502. PubMed ID: 26196805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.
    Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D
    Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autocatalytic reaction fronts inside a porous medium of glass spheres.
    Atis S; Saha S; Auradou H; Salin D; Talon L
    Phys Rev Lett; 2013 Apr; 110(14):148301. PubMed ID: 25167043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Playing with universality classes of Barkhausen avalanches.
    Bohn F; Durin G; Correa MA; Machado NR; Della Pace RD; Chesman C; Sommer RL
    Sci Rep; 2018 Jul; 8(1):11294. PubMed ID: 30050109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avalanche spatial structure and multivariable scaling functions: sizes, heights, widths, and views through windows.
    Chen YJ; Papanikolaou S; Sethna JP; Zapperi S; Durin G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061103. PubMed ID: 22304036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of stable imbibition displacements in a model open fracture. II. Scale-dependent avalanche dynamics.
    Clotet X; Santucci S; Ortín J
    Phys Rev E; 2016 Jan; 93(1):012150. PubMed ID: 26871065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed avalanche processes with underlying interface dynamics.
    Chen CC; den Nijs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011306. PubMed ID: 12241353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal Scaling of the Velocity Field in Crack Front Propagation.
    Le Priol C; Chopin J; Le Doussal P; Ponson L; Rosso A
    Phys Rev Lett; 2020 Feb; 124(6):065501. PubMed ID: 32109111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between avalanches in the depinning dynamics of elastic interfaces.
    Le Doussal P; Thiery T
    Phys Rev E; 2020 Mar; 101(3-1):032108. PubMed ID: 32289984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic scaling analysis of two-dimensional cell colony fronts in a gel medium: a biological system approaching a quenched Kardar-Parisi-Zhang universality.
    Huergo MA; Muzzio NE; Pasquale MA; Pedro González PH; Bolzán AE; Arvia AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022706. PubMed ID: 25215757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pinning-depinning transition in a stochastic growth model for the evolution of cell colony fronts in a disordered medium.
    Moglia B; Albano EV; Guisoni N
    Phys Rev E; 2016 Nov; 94(5-1):052139. PubMed ID: 27967013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roughness and intermittent dynamics of imbibition fronts due to capillary and permeability disorder.
    Planet R; Santucci S; Ortín J
    J Contam Hydrol; 2011 Mar; 120-121():157-69. PubMed ID: 21106273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuation and relaxation properties of pulled fronts: A scenario for nonstandard kardar-parisi-zhang scaling.
    Tripathy G; van Saarloos W
    Phys Rev Lett; 2000 Oct; 85(17):3556-9. PubMed ID: 11030949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spatial persistence of combustion fronts in paper.
    Merikoski J; Maunuksela J; Myllys M; Timonen J; Alava MJ
    Phys Rev Lett; 2003 Jan; 90(2):024501. PubMed ID: 12570549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of stable imbibition displacements in a model open fracture. I. Local avalanche dynamics.
    Clotet X; Ortín J; Santucci S
    Phys Rev E; 2016 Jan; 93(1):012149. PubMed ID: 26871064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avalanche dynamics in fluid imbibition near the depinning transition.
    Pradas M; López JM; Hernández-Machado A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):050101. PubMed ID: 20364935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avalanches and extreme value statistics in interfacial crackling dynamics.
    Santucci S; Tallakstad KT; Angheluta L; Laurson L; Toussaint R; Måløy KJ
    Philos Trans A Math Phys Eng Sci; 2018 Nov; 377(2136):. PubMed ID: 30478206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal Organization of Correlated Local Activity within Global Avalanches in Slowly Driven Interfaces.
    Planet R; López JM; Santucci S; Ortín J
    Phys Rev Lett; 2018 Jul; 121(3):034101. PubMed ID: 30085802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frozen reaction fronts in steady flows: A burning-invariant-manifold perspective.
    Mahoney JR; Li J; Boyer C; Solomon T; Mitchell KA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063005. PubMed ID: 26764802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.