These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28505783)

  • 1. Low-frequency dielectric response of charged oblate spheroidal particles immersed in an electrolyte.
    Hou CY; Freed DE; Sen PN
    Phys Rev E; 2017 Apr; 95(4-1):042601. PubMed ID: 28505783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency dielectric response of a spheroidal particle with a thin double layer.
    Freed DE
    Phys Rev E; 2018 Aug; 98(2-1):022607. PubMed ID: 30253600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency dielectric response of a periodic array of charged spheres in an electrolyte solution: The simple cubic lattice.
    Hou CY; Qian J; Freed DE
    Phys Rev E; 2019 Mar; 99(3-1):032604. PubMed ID: 30999468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low frequency complex dielectric (conductivity) response of dilute clay suspensions: Modeling and experiments.
    Hou CY; Feng L; Seleznev N; Freed DE
    J Colloid Interface Sci; 2018 Sep; 525():62-75. PubMed ID: 29684732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex dielectric response of ellipsoidal particles with surface conduction.
    Bertrand EA; Endres AL
    J Chem Phys; 2009 Jun; 130(22):224705. PubMed ID: 19530782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric permittivity of concentrated suspensions of elongated goethite particles.
    Rica RA; Jiménez ML; Delgado AV
    J Colloid Interface Sci; 2010 Mar; 343(2):564-73. PubMed ID: 20044095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles.
    Arzola AV; Jákl P; Chvátal L; Zemánek P
    Opt Express; 2014 Jun; 22(13):16207-21. PubMed ID: 24977872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the finite size and effective permittivity of ions on the equilibrium double layer around colloidal particles in aqueous electrolyte solution.
    López-García JJ; Horno J; Grosse C
    J Colloid Interface Sci; 2014 Aug; 428():308-15. PubMed ID: 24910067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrorotation of a leaky dielectric spheroid immersed in a viscous fluid.
    Dolinsky Y; Elperin T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066607. PubMed ID: 20365294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-interface interaction across a nonpolar medium in relation to the production of particle-stabilized emulsions.
    Danov KD; Kralchevsky PA; Ananthapadmanabhan KP; Lips A
    Langmuir; 2006 Jan; 22(1):106-15. PubMed ID: 16378408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusiophoresis in a suspension of spherical particles with arbitrary double-layer thickness.
    Wei YK; Keh HJ
    J Colloid Interface Sci; 2002 Apr; 248(1):76-87. PubMed ID: 16290506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of non-equilibrium association-dissociation processes in the dynamic electrophoretic mobility and dielectric response of realistic salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E; Lechuga L; Arroyo FJ; Delgado Á
    Adv Colloid Interface Sci; 2013 Dec; 201-202():57-67. PubMed ID: 24161224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductivity, Permittivity, and Characteristic Time of Colloidal Suspensions in Weak Electrolyte Solutions.
    Grosse C; Shilov VN
    J Colloid Interface Sci; 2000 May; 225(2):340-348. PubMed ID: 11254271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion Interactions Produced by Nonadsorbing Charged and Uncharged Spheroids.
    Piech M; Walz JY
    J Colloid Interface Sci; 2000 Dec; 232(1):86-101. PubMed ID: 11071737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximate analytic expressions for the electrophoretic mobility of spheroidal particles.
    Ohshima H
    Electrophoresis; 2021 Apr; 42(7-8):1003-1009. PubMed ID: 32975819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Analysis of Thermophoresis of a Charged Spheroidal Colloid in Aqueous Media.
    Zhou Y; Yang Y; Zhu C; Yang M; Hu Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33672210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light scattering by a spheroidal particle.
    Asano S; Yamamoto G
    Appl Opt; 1975 Jan; 14(1):29-49. PubMed ID: 20134829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric spectroscopy of a nanofiltration membranes-electrolyte solution system: I. Low-frequency dielectric relaxation from the counterion polarization in pores and model development.
    Lu Q; Zhao K
    J Phys Chem B; 2010 Dec; 114(50):16783-91. PubMed ID: 21090732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the use of the hypothesis of local electroneutrality in colloidal suspensions for the calculation of their dielectric properties.
    López-García JJ; Grosse C; Horno J
    J Phys Chem B; 2005 Mar; 109(12):5808-15. PubMed ID: 16851633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.