These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28505795)

  • 1. Parallelization of microfluidic flow-focusing devices.
    Amstad E; Chen X; Eggersdorfer M; Cohen N; Kodger TE; Ren CL; Weitz DA
    Phys Rev E; 2017 Apr; 95(4-1):043105. PubMed ID: 28505795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices.
    Nabavi SA; Gu S; Vladisavljević GT; Ekanem EE
    J Colloid Interface Sci; 2015 Jul; 450():279-287. PubMed ID: 25828435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of monodisperse drops from viscous fluids.
    Håti AG; Szymborski TR; Steinacher M; Amstad E
    Lab Chip; 2018 Feb; 18(4):648-654. PubMed ID: 29359212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drop formation in non-planar microfluidic devices.
    Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA
    Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust scalable high throughput production of monodisperse drops.
    Amstad E; Chemama M; Eggersdorfer M; Arriaga LR; Brenner MP; Weitz DA
    Lab Chip; 2016 Oct; 16(21):4163-4172. PubMed ID: 27714028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time size modulation and synchronization of a microfluidic dropmaker with pulsed surface acoustic waves (SAW).
    Schmid L; Franke T
    Sci Rep; 2018 Mar; 8(1):4541. PubMed ID: 29540848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of instabilities in multiphase flow by geometric confinement.
    Humphry KJ; Ajdari A; Fernández-Nieves A; Stone HA; Weitz DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056310. PubMed ID: 19518565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices.
    Michelon M; Oliveira DRB; de Figueiredo Furtado G; Gaziola de la Torre L; Cunha RL
    Colloids Surf B Biointerfaces; 2017 Aug; 156():349-357. PubMed ID: 28549322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle.
    Dewandre A; Rivero-Rodriguez J; Vitry Y; Sobac B; Scheid B
    Sci Rep; 2020 Dec; 10(1):21616. PubMed ID: 33303772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of acoustic droplet formation in a microfluidic flow-focusing device.
    Cheung YN; Qiu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066310. PubMed ID: 22304193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monosized dripping mode of axisymmetric flow focusing.
    Cruz-Mazo F; Montanero JM; Gañán-Calvo AM
    Phys Rev E; 2016 Nov; 94(5-1):053122. PubMed ID: 27967009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces.
    Roberts CC; Rao RR; Loewenberg M; Brooks CF; Galambos P; Grillet AM; Nemer MB
    Lab Chip; 2012 Apr; 12(8):1540-7. PubMed ID: 22398953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate.
    Stan CA; Tang SK; Whitesides GM
    Anal Chem; 2009 Mar; 81(6):2399-402. PubMed ID: 19209912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices.
    Josephides DN; Sajjadi S
    Langmuir; 2015 Jan; 31(3):1218-24. PubMed ID: 25517938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-in-Water Droplets by Passive Microfluidic Flow Focusing.
    Moon BU; Abbasi N; Jones SG; Hwang DK; Tsai SS
    Anal Chem; 2016 Apr; 88(7):3982-9. PubMed ID: 26959358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow focusing geometry generates droplets through a plug and squeeze mechanism.
    Romero PA; Abate AR
    Lab Chip; 2012 Dec; 12(24):5130-2. PubMed ID: 23117576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations.
    Vladisavljević GT; Shahmohamadi H; Das DB; Ekanem EE; Tauanov Z; Sharma L
    J Colloid Interface Sci; 2014 Mar; 418():163-70. PubMed ID: 24461831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the fluid injection configuration on droplet size in a microfluidic T junction.
    Carrier O; Funfschilling D; Li HZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013003. PubMed ID: 24580316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.