These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 28505985)
1. Upper limb robotics applied to neurorehabilitation: An overview of clinical practice. Duret C; Mazzoleni S NeuroRehabilitation; 2017; 41(1):5-15. PubMed ID: 28505985 [TBL] [Abstract][Full Text] [Related]
2. Technologically-advanced assessment of upper-limb spasticity: a pilot study. Posteraro F; Crea S; Mazzoleni S; Berteanu M; Ciobanu I; Vitiello N; Cempini M; Gervasio S; Mrachacz-Kersting N Eur J Phys Rehabil Med; 2018 Aug; 54(4):536-544. PubMed ID: 28870058 [TBL] [Abstract][Full Text] [Related]
3. Post-stroke robotic training of the upper limb in the early rehabilitation phase. Masiero S; Rosati G; Valarini S; Rossi A Funct Neurol; 2009; 24(4):203-6. PubMed ID: 20412726 [TBL] [Abstract][Full Text] [Related]
4. Robotics in Lower-Limb Rehabilitation after Stroke. Zhang X; Yue Z; Wang J Behav Neurol; 2017; 2017():3731802. PubMed ID: 28659660 [TBL] [Abstract][Full Text] [Related]
5. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
6. System Framework of Robotics in Upper Limb Rehabilitation on Poststroke Motor Recovery. Zhang K; Chen X; Liu F; Tang H; Wang J; Wen W Behav Neurol; 2018; 2018():6737056. PubMed ID: 30651892 [TBL] [Abstract][Full Text] [Related]
7. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb. Oña ED; Cano-de la Cuerda R; Sánchez-Herrera P; Balaguer C; Jardón A J Healthc Eng; 2018; 2018():9758939. PubMed ID: 29707189 [TBL] [Abstract][Full Text] [Related]
8. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study. Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120 [TBL] [Abstract][Full Text] [Related]
9. Robot-assisted therapy for arm recovery for stroke patients: state of the art and clinical implication. Morone G; Cocchi I; Paolucci S; Iosa M Expert Rev Med Devices; 2020 Mar; 17(3):223-233. PubMed ID: 32107946 [No Abstract] [Full Text] [Related]
10. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057 [TBL] [Abstract][Full Text] [Related]
11. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges. Mazzoleni S; Duret C; Grosmaire AG; Battini E Biomed Res Int; 2017; 2017():8905637. PubMed ID: 29057269 [TBL] [Abstract][Full Text] [Related]
12. [Does upper limb robot-assisted rehabilitation contribute to improve the prognosis of post-stroke hemiparesis?]. Duret C; Gracies JM Rev Neurol (Paris); 2014 Nov; 170(11):671-9. PubMed ID: 25304657 [TBL] [Abstract][Full Text] [Related]
13. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
14. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects. Sheng B; Zhang Y; Meng W; Deng C; Xie S Med Eng Phys; 2016 Jul; 38(7):587-606. PubMed ID: 27117423 [TBL] [Abstract][Full Text] [Related]
15. Reliability, validity and discriminant ability of the instrumental indices provided by a novel planar robotic device for upper limb rehabilitation. Germanotta M; Cruciani A; Pecchioli C; Loreti S; Spedicato A; Meotti M; Mosca R; Speranza G; Cecchi F; Giannarelli G; Padua L; Aprile I J Neuroeng Rehabil; 2018 May; 15(1):39. PubMed ID: 29769127 [TBL] [Abstract][Full Text] [Related]
16. Robot-assisted therapy for upper limb paresis after stroke: Use of robotic algorithms in advanced practice. Grosmaire AG; Pila O; Breuckmann P; Duret C NeuroRehabilitation; 2022; 51(4):577-593. PubMed ID: 36530096 [TBL] [Abstract][Full Text] [Related]
17. Does assist-as-needed upper limb robotic therapy promote participation in repetitive activity-based motor training in sub-acute stroke patients with severe paresis? Grosmaire AG; Duret C NeuroRehabilitation; 2017; 41(1):31-39. PubMed ID: 28527224 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Taveggia G; Borboni A; Salvi L; Mulé C; Fogliaresi S; Villafañe JH; Casale R Eur J Phys Rehabil Med; 2016 Dec; 52(6):767-773. PubMed ID: 27406879 [TBL] [Abstract][Full Text] [Related]
19. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study. Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427 [TBL] [Abstract][Full Text] [Related]
20. Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. Masiero S; Carraro E; Ferraro C; Gallina P; Rossi A; Rosati G J Rehabil Med; 2009 Nov; 41(12):981-5. PubMed ID: 19841828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]