These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28505989)

  • 21. [Preliminary study of robot-assisted ankle rehabilitation for children with cerebral palsy].
    Wang RL; Zhou ZH; Xi YC; Wang QN; Wang NH; Huang Z
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):207-212. PubMed ID: 29643516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. State of the art in parallel ankle rehabilitation robot: a systematic review.
    Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y
    J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.
    Goodman RN; Rietschel JC; Roy A; Jung BC; Diaz J; Macko RF; Forrester LW
    J Rehabil Res Dev; 2014; 51(2):213-27. PubMed ID: 24933720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive impedance control of a robotic orthosis for gait rehabilitation.
    Hussain S; Xie SQ; Jamwal PK
    IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the effect of walking surface stiffness on inter-limb coordination in human walking: toward bilaterally informed robotic gait rehabilitation.
    Skidmore J; Artemiadis P
    J Neuroeng Rehabil; 2016 Mar; 13():32. PubMed ID: 27004528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of robotic-assisted gait rehabilitation on dynamic equilibrium control in the gait of children with cerebral palsy.
    Wallard L; Dietrich G; Kerlirzin Y; Bredin J
    Gait Posture; 2018 Feb; 60():55-60. PubMed ID: 29156378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training.
    Washabaugh E; Guo J; Chang CK; Remy D; Krishnan C
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):496-508. PubMed ID: 29993459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.
    Tucker MR; Shirota C; Lambercy O; Sulzer JS; Gassert R
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2331-2343. PubMed ID: 28113200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative EEG Evaluation During Robot-Assisted Foot Movement.
    Formaggio E; Masiero S; Bosco A; Izzi F; Piccione F; Del Felice A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1633-1640. PubMed ID: 27845668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applicability of a new robotic walking aid in a patient with cerebral palsy. Case report.
    Smania N; Gandolfi M; Marconi V; Calanca A; Geroin C; Piazza S; Bonetti P; Fiorini P; Cosentino A; Capelli C; Conte D; Bendinelli M; Munari D; Ianes P; Fiaschi A; Picelli A
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):147-53. PubMed ID: 22543558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gait impairment in neurological disorders: a new technological approach.
    Semprini R; Sale P; Foti C; Fini M; Franceschini M
    Funct Neurol; 2009; 24(4):179-83. PubMed ID: 20412722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exoskeleton for gait rehabilitation of children: Conceptual design.
    Cornejo JL; Santana JF; Salinas SA
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():452-454. PubMed ID: 28813861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robotic-assisted gait training in Parkinson's disease: a three-month follow-up randomized clinical trial.
    Furnari A; Calabrò RS; De Cola MC; Bartolo M; Castelli A; Mapelli A; Buttacchio G; Farini E; Bramanti P; Casale R
    Int J Neurosci; 2017 Nov; 127(11):996-1004. PubMed ID: 28132574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robot-assisted ankle rehabilitation: a review.
    Alvarez-Perez MG; Garcia-Murillo MA; Cervantes-Sánchez JJ
    Disabil Rehabil Assist Technol; 2020 May; 15(4):394-408. PubMed ID: 30856032
    [No Abstract]   [Full Text] [Related]  

  • 37. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.
    Cao J; Xie SQ; Das R; Zhu GL
    Med Eng Phys; 2014 Dec; 36(12):1555-66. PubMed ID: 25205588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design framework for a simple robotic ankle evaluation and rehabilitation device.
    Syrseloudis CE; Emiris IZ; Maganaris CN; Lilas TE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4310-3. PubMed ID: 19163666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofeedback Signals for Robotic Rehabilitation: Assessment of Wrist Muscle Activation Patterns in Healthy Humans.
    Semprini M; Cuppone AV; Delis I; Squeri V; Panzeri S; Konczak J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):883-892. PubMed ID: 28114024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ankle control and strength training for children with cerebral palsy using the Rutgers Ankle CP: a case study.
    Cioi D; Kale A; Burdea G; Engsberg J; Janes W; Ross S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975432. PubMed ID: 22275633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.