BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28505990)

  • 1. The features of Gait Exercise Assist Robot: Precise assist control and enriched feedback.
    Hirano S; Saitoh E; Tanabe S; Tanikawa H; Sasaki S; Kato D; Kagaya H; Itoh N; Konosu H
    NeuroRehabilitation; 2017; 41(1):77-84. PubMed ID: 28505990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Randomized Controlled Trial of Gait Training Using Gait Exercise Assist Robot (GEAR) in Stroke Patients with Hemiplegia.
    Tomida K; Sonoda S; Hirano S; Suzuki A; Tanino G; Kawakami K; Saitoh E; Kagaya H
    J Stroke Cerebrovasc Dis; 2019 Sep; 28(9):2421-2428. PubMed ID: 31307899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensive seated robotic training of the ankle in patients with chronic stroke differentially improves gait.
    Chang JL; Lin RY; Saul M; Koch PJ; Krebs HI; Volpe BT
    NeuroRehabilitation; 2017; 41(1):61-68. PubMed ID: 28505988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of wearable ankle robotics for stair and over-ground training on sub-acute stroke: a randomized controlled trial.
    Yeung LF; Lau CCY; Lai CWK; Soo YOY; Chan ML; Tong RKY
    J Neuroeng Rehabil; 2021 Jan; 18(1):19. PubMed ID: 33514393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of robotic exoskeleton gait training during acute stroke on functional ambulation.
    Karunakaran KK; Gute S; Ames GR; Chervin K; Dandola CM; Nolan KJ
    NeuroRehabilitation; 2021; 48(4):493-503. PubMed ID: 33814476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-assisted Gait Training Using Welwalk in Hemiparetic Stroke Patients: An Effectiveness Study with Matched Control.
    Ii T; Hirano S; Tanabe S; Saitoh E; Yamada J; Mukaino M; Watanabe M; Sonoda S; Otaka Y
    J Stroke Cerebrovasc Dis; 2020 Dec; 29(12):105377. PubMed ID: 33091753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of using Gait Exercise Assist Robot (GEAR) on gait pattern in stroke patients: a cross-sectional pilot study.
    Katoh D; Tanikawa H; Hirano S; Mukaino M; Yamada J; Sasaki S; Ohtsuka K; Katoh M; Saitoh E
    Top Stroke Rehabil; 2020 Mar; 27(2):103-109. PubMed ID: 31483736
    [No Abstract]   [Full Text] [Related]  

  • 8. Improving abnormal gait patterns by using a gait exercise assist robot (GEAR) in chronic stroke subjects: A randomized, controlled, pilot trial.
    Ogino T; Kanata Y; Uegaki R; Yamaguchi T; Morisaki K; Nakano S; Uchiyama Y; Domen K
    Gait Posture; 2020 Oct; 82():45-51. PubMed ID: 32882517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting the efficiency of walking independence in patients with subacute stroke following robot-assisted gait training with conventional rehabilitation.
    Maki Y; Ii T; Yamada M; Tanabe S
    Int J Rehabil Res; 2024 Mar; 47(1):26-33. PubMed ID: 38175700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of gait exercise assist robot (GEAR) on subjects with chronic stroke: A randomized controlled pilot trial.
    Ogino T; Kanata Y; Uegaki R; Yamaguchi T; Morisaki K; Nakano S; Domen K
    J Stroke Cerebrovasc Dis; 2020 Aug; 29(8):104886. PubMed ID: 32689628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait training using a stationary, one-leg gait exercise assist robot for chronic stroke hemiplegia: a case report.
    Itoh N; Imoto D; Kubo S; Takahashi K; Hishikawa N; Mikami Y; Kubo T
    J Phys Ther Sci; 2018 Aug; 30(8):1046-1051. PubMed ID: 30154598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results.
    Molteni F; Gasperini G; Gaffuri M; Colombo M; Giovanzana C; Lorenzon C; Farina N; Cannaviello G; Scarano S; Proserpio D; Liberali D; Guanziroli E
    Eur J Phys Rehabil Med; 2017 Oct; 53(5):676-684. PubMed ID: 28118698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
    Hidler J; Wisman W; Neckel N
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute stroke rehabilitation for gait training with cyborg type robot Hybrid Assistive Limb: A pilot study.
    Yokota C; Yamamoto Y; Kamada M; Nakai M; Nishimura K; Ando D; Sato T; Koga M; Ihara M; Toyoda K; Fujimoto Y; Odani H; Minematsu K; Nakajima T
    J Neurol Sci; 2019 Sep; 404():11-15. PubMed ID: 31323516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke.
    Liu Q; Wang C; Long JJ; Sun T; Duan L; Zhang X; Zhang B; Shen Y; Shang W; Lin Z; Wang Y; Xia J; Wei J; Li W; Wu Z
    J Healthc Eng; 2018; 2018():3867243. PubMed ID: 29736231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent Effect of Gait Exercise Assist Robot Training on Gait Ability and Lower Limb Function of Patients With Subacute Stroke: A Matched Case-Control Study With Three-Dimensional Gait Analysis.
    Wang Y; Mukaino M; Hirano S; Tanikawa H; Yamada J; Ohtsuka K; Ii T; Saitoh E; Otaka Y
    Front Neurorobot; 2020; 14():42. PubMed ID: 32848691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of innovative hip-knee-ankle interlimb coordinated robot training on ambulation, cardiopulmonary function, depression, and fall confidence in acute hemiplegia.
    Park C; Oh-Park M; Dohle C; Bialek A; Friel K; Edwards D; Krebs HI; You JSH
    NeuroRehabilitation; 2020; 46(4):577-587. PubMed ID: 32538882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients.
    Yeung LF; Ockenfeld C; Pang MK; Wai HW; Soo OY; Li SW; Tong KY
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():211-215. PubMed ID: 28813820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of new rehabilitation robot device that can be attached to the conventional Knee-Ankle-Foot-Orthosis for controlling the knee in individuals after stroke.
    Shihomi K; Koji O; Tadao T; Yuichi S; Yoshiyuki H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():304-307. PubMed ID: 28813836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.