BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28505990)

  • 41. The voluntary driven exoskeleton Hybrid Assistive Limb (HAL) for postoperative training of thoracic ossification of the posterior longitudinal ligament: a case report.
    Fujii K; Abe T; Kubota S; Marushima A; Kawamoto H; Ueno T; Matsushita A; Nakai K; Saotome K; Kadone H; Endo A; Haginoya A; Hada Y; Matsumura A; Sankai Y; Yamazaki M
    J Spinal Cord Med; 2017 May; 40(3):361-367. PubMed ID: 26856189
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comparison of knee-ankle-foot orthoses with either metal struts or an adjustable posterior strut in hemiplegic stroke patients.
    Maeshima S; Okazaki H; Okamoto S; Mizuno S; Asano N; Maeda H; Masaki M; Matsuo H; Tsunoda T; Sonoda S
    J Stroke Cerebrovasc Dis; 2015 Jun; 24(6):1312-6. PubMed ID: 25891754
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The use of a robot-assisted Gait Trainer GT1 in patients in the acute period of cerebral stroke: a pilot study].
    Skvortsova VI; Ivanova GE; Kovrazhkina EA; Rumiantseva NA; Staritsyn AN; Suvorov AIu; Sogomonian EK
    Zh Nevrol Psikhiatr Im S S Korsakova; 2008; Suppl 23():28-34. PubMed ID: 19425367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of the Synchronization-Based Control of a Wearable Robot Having a Non-Exoskeletal Structure on the Hemiplegic Gait of Stroke Patients.
    Mizukami N; Takeuchi S; Tetsuya M; Tsukahara A; Yoshida K; Matsushima A; Maruyama Y; Tako K; Hashimoto M
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1011-1016. PubMed ID: 29752236
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of robot-guided passive stretching and active movement training of ankle and mobility impairments in stroke.
    Waldman G; Yang CY; Ren Y; Liu L; Guo X; Harvey RL; Roth EJ; Zhang LQ
    NeuroRehabilitation; 2013; 32(3):625-34. PubMed ID: 23648617
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: a randomized clinical trial.
    Taveggia G; Borboni A; Mulé C; Villafañe JH; Negrini S
    Int J Rehabil Res; 2016 Mar; 39(1):29-35. PubMed ID: 26512928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of robot-assisted gait training using virtual reality and auditory stimulation on balance and gait abilities in persons with stroke.
    Park J; Chung Y
    NeuroRehabilitation; 2018; 43(2):227-235. PubMed ID: 30040760
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: A randomized controlled pilot trial.
    Bang DH; Shin WS
    NeuroRehabilitation; 2016 Apr; 38(4):343-9. PubMed ID: 27061162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reduced knee hyperextension after wearing a robotic knee orthosis during gait training--a case study.
    Mao Y; Lo WL; Xu G; Li LS; Li L; Huang D
    Biomed Mater Eng; 2015; 26 Suppl 1():S381-8. PubMed ID: 26406027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hemorrhagic versus ischemic stroke: Who can best benefit from blended conventional physiotherapy with robotic-assisted gait therapy?
    Dierick F; Dehas M; Isambert JL; Injeyan S; Bouché AF; Bleyenheuft Y; Portnoy S
    PLoS One; 2017; 12(6):e0178636. PubMed ID: 28575054
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gait training in subacute non-ambulatory stroke patients using a full weight-bearing gait-assistance robot: A prospective, randomized, open, blinded-endpoint trial.
    Ochi M; Wada F; Saeki S; Hachisuka K
    J Neurol Sci; 2015; 353(1-2):130-6. PubMed ID: 25956233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gait improvement in stroke patients by Gait Exercise Assist Robot training is related to trunk verticality.
    Aimoto K; Matsui T; Asai Y; Tozawa T; Tsukada T; Kawamura K; Ozaki K; Kondo I
    J Phys Ther Sci; 2022 Nov; 34(11):715-719. PubMed ID: 36337216
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of treadmill training on gait, balance and trunk control in a hemiplegic subject: a single system design.
    Mudge S; Rochester L; Recordon A
    Disabil Rehabil; 2003 Sep; 25(17):1000-7. PubMed ID: 12851089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial.
    Bergmann J; Krewer C; Bauer P; Koenig A; Riener R; Müller F
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):397-407. PubMed ID: 29265791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New wearable walking-type continuous passive motion device for postsurgery walking rehabilitation.
    Zhu Y; Nakamura M; Horiuchi T; Kohno H; Takahashi R; Terada H; Haro H
    Proc Inst Mech Eng H; 2013 Jul; 227(7):733-45. PubMed ID: 23636753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploration of Two Training Paradigms Using Forced Induced Weight Shifting With the Tethered Pelvic Assist Device to Reduce Asymmetry in Individuals After Stroke: Case Reports.
    Bishop L; Khan M; Martelli D; Quinn L; Stein J; Agrawal S
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S135-S140. PubMed ID: 28661914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns.
    Shin YK; Chong HJ; Kim SJ; Cho SR
    Yonsei Med J; 2015 Nov; 56(6):1703-13. PubMed ID: 26446657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.