These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
531 related articles for article (PubMed ID: 28506291)
1. Targeting CD22 with the monoclonal antibody epratuzumab modulates human B-cell maturation and cytokine production in response to Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) signaling. Giltiay NV; Shu GL; Shock A; Clark EA Arthritis Res Ther; 2017 May; 19(1):91. PubMed ID: 28506291 [TBL] [Abstract][Full Text] [Related]
2. Epratuzumab modulates B-cell signaling without affecting B-cell numbers or B-cell functions in a mouse model with humanized CD22. Özgör L; Brandl C; Shock A; Nitschke L Eur J Immunol; 2016 Sep; 46(9):2260-72. PubMed ID: 27352780 [TBL] [Abstract][Full Text] [Related]
3. CD22 ligation inhibits downstream B cell receptor signaling and Ca(2+) flux upon activation. Sieger N; Fleischer SJ; Mei HE; Reiter K; Shock A; Burmester GR; Daridon C; Dörner T Arthritis Rheum; 2013 Mar; 65(3):770-9. PubMed ID: 23233360 [TBL] [Abstract][Full Text] [Related]
4. Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Daridon C; Blassfeld D; Reiter K; Mei HE; Giesecke C; Goldenberg DM; Hansen A; Hostmann A; Frölich D; Dörner T Arthritis Res Ther; 2010; 12(6):R204. PubMed ID: 21050432 [TBL] [Abstract][Full Text] [Related]
5. Epratuzumab inhibits the production of the proinflammatory cytokines IL-6 and TNF-α, but not the regulatory cytokine IL-10, by B cells from healthy donors and SLE patients. Fleischer V; Sieber J; Fleischer SJ; Shock A; Heine G; Daridon C; Dörner T Arthritis Res Ther; 2015 Jul; 17(1):185. PubMed ID: 26183319 [TBL] [Abstract][Full Text] [Related]
6. Extensive crosslinking of CD22 by epratuzumab triggers BCR signaling and caspase-dependent apoptosis in human lymphoma cells. Chang CH; Wang Y; Gupta P; Goldenberg DM MAbs; 2015; 7(1):199-211. PubMed ID: 25484043 [TBL] [Abstract][Full Text] [Related]
7. The mechanistic impact of CD22 engagement with epratuzumab on B cell function: Implications for the treatment of systemic lupus erythematosus. Dörner T; Shock A; Goldenberg DM; Lipsky PE Autoimmun Rev; 2015 Dec; 14(12):1079-86. PubMed ID: 26212727 [TBL] [Abstract][Full Text] [Related]
8. Trogocytosis of multiple B-cell surface markers by CD22 targeting with epratuzumab. Rossi EA; Goldenberg DM; Michel R; Rossi DL; Wallace DJ; Chang CH Blood; 2013 Oct; 122(17):3020-9. PubMed ID: 23821660 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Tyrosine Phosphatase Activity Underlies Dysregulated B Cell Receptor Signaling and Promotes Survival of Human Lupus B Cells. Fleischer SJ; Daridon C; Fleischer V; Lipsky PE; Dörner T Arthritis Rheumatol; 2016 May; 68(5):1210-21. PubMed ID: 26713408 [TBL] [Abstract][Full Text] [Related]
10. CD22 and autoimmune disease. Dörner T; Shock A; Smith KG Int Rev Immunol; 2012 Oct; 31(5):363-78. PubMed ID: 23083346 [TBL] [Abstract][Full Text] [Related]
11. Toll-like receptor 7 cooperates with IL-4 in activated B cells through antigen receptor or CD38 and induces class switch recombination and IgG1 production. Tsukamoto Y; Nagai Y; Kariyone A; Shibata T; Kaisho T; Akira S; Miyake K; Takatsu K Mol Immunol; 2009 Apr; 46(7):1278-88. PubMed ID: 19157556 [TBL] [Abstract][Full Text] [Related]
13. Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Jacobi AM; Goldenberg DM; Hiepe F; Radbruch A; Burmester GR; Dörner T Ann Rheum Dis; 2008 Apr; 67(4):450-7. PubMed ID: 17673490 [TBL] [Abstract][Full Text] [Related]
15. Effects of specific anti-B and/or anti-plasma cell immunotherapy on antibody production in baboons: depletion of CD20- and CD22-positive B cells does not result in significantly decreased production of anti-alphaGal antibody. Alwayn IP; Xu Y; Basker M; Wu C; Buhler L; Lambrigts D; Treter S; Harper D; Kitamura H; Vitetta ES; Abraham S; Awwad M; White-Scharf ME; Sachs DH; Thall A; Cooper DK Xenotransplantation; 2001 Aug; 8(3):157-71. PubMed ID: 11472623 [TBL] [Abstract][Full Text] [Related]
16. High Wang T; Marken J; Chen J; Tran VB; Li QZ; Li M; Cerosaletti K; Elkon KB; Zeng X; Giltiay NV Front Immunol; 2019; 10():1243. PubMed ID: 31231380 [TBL] [Abstract][Full Text] [Related]
17. Metabolic Reprogramming Commits Differentiation of Human CD27 Torigoe M; Iwata S; Nakayamada S; Sakata K; Zhang M; Hajime M; Miyazaki Y; Narisawa M; Ishii K; Shibata H; Tanaka Y J Immunol; 2017 Jul; 199(2):425-434. PubMed ID: 28626065 [TBL] [Abstract][Full Text] [Related]
18. Safety, pharmacokinetics, and pharmacodynamics of epratuzumab in Japanese patients with moderate-to-severe systemic lupus erythematosus: Results from a phase 1/2 randomized study. Tsuru T; Tanaka Y; Kishimoto M; Saito K; Yoshizawa S; Takasaki Y; Miyamura T; Niiro H; Morimoto S; Yamamoto J; Lledo-Garcia R; Shao J; Tatematsu S; Togo O; Koike T Mod Rheumatol; 2016; 26(1):87-93. PubMed ID: 26382733 [TBL] [Abstract][Full Text] [Related]
19. Impact of anti-interleukin-6 receptor blockade on circulating T and B cell subsets in patients with systemic lupus erythematosus. Shirota Y; Yarboro C; Fischer R; Pham TH; Lipsky P; Illei GG Ann Rheum Dis; 2013 Jan; 72(1):118-28. PubMed ID: 22858586 [TBL] [Abstract][Full Text] [Related]
20. Efficacy of Epratuzumab, an Anti-CD22 Monoclonal IgG Antibody, in Systemic Lupus Erythematosus Patients With Associated Sjögren's Syndrome: Post Hoc Analyses From the EMBODY Trials. Gottenberg JE; Dörner T; Bootsma H; Devauchelle-Pensec V; Bowman SJ; Mariette X; Bartz H; Oortgiesen M; Shock A; Koetse W; Galateanu C; Bongardt S; Wegener WA; Goldenberg DM; Meno-Tetang G; Kosutic G; Gordon C Arthritis Rheumatol; 2018 May; 70(5):763-773. PubMed ID: 29381843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]