These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28506498)

  • 1. Sweet spot matching: A thin-layer chromatography-based countercurrent solvent system selection strategy.
    Liu Y; Friesen JB; Grzelak EM; Fan Q; Tang T; Durić K; Jaki BU; McAlpine JB; Franzblau SG; Chen SN; Pauli GF
    J Chromatogr A; 2017 Jun; 1504():46-54. PubMed ID: 28506498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel 9 × 9 map-based solvent selection strategy for targeted counter-current chromatography isolation of natural products.
    Liang J; Meng J; Wu D; Guo M; Wu S
    J Chromatogr A; 2015 Jun; 1400():27-39. PubMed ID: 25980692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Generally Useful Estimate of Solvent Systems (GUESS) method enables the rapid purification of methylpyridoxine regioisomers by countercurrent chromatography.
    Liu Y; Friesen JB; Klein LL; McAlpine JB; Lankin DC; Pauli GF; Chen SN
    J Chromatogr A; 2015 Dec; 1426():248-51. PubMed ID: 26680272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GUESS - A simple approach to accelerate optimization countercurrent separation.
    Jiang X; Yang X; Chen Y; Yan X; Liu H; Lu F; Li D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2023 Jan; 1215():123573. PubMed ID: 36603474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of two constituents from purple sweet potato by combination of silica gel column and high-speed counter-current chromatography.
    He K; Ye X; Li X; Chen H; Yuan L; Deng Y; Chen X; Li X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jan; 881-882():49-54. PubMed ID: 22197606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid and practical prediction method for the Arizona solvent system family used in high speed countercurrent chromatography.
    Wang X; Liu C; Ma QY; Tian ZH; Jiang HQ; Lv QT; Rong R
    J Chromatogr A; 2020 Oct; 1629():461426. PubMed ID: 32858452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.
    Friesen JB; Ahmed S; Pauli GF
    J Chromatogr A; 2015 Jan; 1377():55-63. PubMed ID: 25542704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Countercurrent separation of natural products.
    Pauli GF; Pro SM; Friesen JB
    J Nat Prod; 2008 Aug; 71(8):1489-508. PubMed ID: 18666799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using nonrandom two-liquid model for solvent system selection in counter-current chromatography.
    Ren DB; Qin YH; Yun YH; Lu HM; Chen XQ; Liang YZ
    J Chromatogr A; 2014 Aug; 1355():80-5. PubMed ID: 24951288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developments in the application of counter-current chromatography to plant analysis.
    Marston A; Hostettmann K
    J Chromatogr A; 2006 Apr; 1112(1-2):181-94. PubMed ID: 16269151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin-layer chromatography.
    Meyers CL
    Curr Protoc Nucleic Acid Chem; 2001 May; Appendix 3():Appendix 3D. PubMed ID: 18428813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies of solvent system selection for the isolation of flavonoids by countercurrent chromatography.
    Costa Fd; Leitão GG
    J Sep Sci; 2010 Feb; 33(3):336-47. PubMed ID: 20169552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Countercurrent separation assisted identification of two mammalian steroid hormones in Vitex negundo.
    Fan Q; Liu Y; Kulakowski D; Chen S; Friesen JB; Pauli GF; Song Q
    J Chromatogr A; 2018 Jun; 1553():108-115. PubMed ID: 29699871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thin layer chromatography.
    Santiago M; Strobel S
    Methods Enzymol; 2013; 533():303-24. PubMed ID: 24182936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room temperature ionic liquids-based salting-in strategy for counter-current chromatography in the separation of arctiin.
    Wang Y; Zhang L; Wang D; Guo X; Wu S
    J Chromatogr A; 2016 Dec; 1478():26-34. PubMed ID: 27932083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.
    Englert M; Vetter W
    Anal Chim Acta; 2015 Jul; 884():114-23. PubMed ID: 26073817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation and prediction of partition coefficient using nonrandom two-liquid segment activity coefficient model for solvent system selection in counter-current chromatography separation.
    Ren DB; Yang ZH; Liang YZ; Ding Q; Chen C; Ouyang ML
    J Chromatogr A; 2013 Aug; 1301():10-8. PubMed ID: 23806351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two computational methods for solvent screening in countercurrent and centrifugal partition chromatography.
    Vilas-Boas SM; Cordova IW; Kurnia KA; Almeida HHS; Gaschi PS; Coutinho JAP; Pinho SP; Ferreira O
    J Chromatogr A; 2022 Mar; 1666():462859. PubMed ID: 35124362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent System Selection Strategies in Countercurrent Separation.
    Liu Y; Friesen JB; McAlpine JB; Pauli GF
    Planta Med; 2015 Nov; 81(17):1582-91. PubMed ID: 26393937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of furanoterpenoid toxins from sweet potato by thin-layer chromatography].
    Shen Y
    Se Pu; 1997 Jul; 15(4):328-30. PubMed ID: 15739468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.