These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 28506583)
1. Synthesis of enantiomerically enriched drug precursors and an insect pheromone via reduction of ketones using commercially available carbonyl reductase screening kit "Chiralscreen® OH". Nagai T; Sakurai S; Natori N; Hataoka M; Kinoshita T; Inoue H; Hanaya K; Shoji M; Sugai T Bioorg Med Chem; 2018 Apr; 26(7):1304-1313. PubMed ID: 28506583 [TBL] [Abstract][Full Text] [Related]
2. Stereoselective ketone reduction by a carbonyl reductase from Sporobolomyces salmonicolor. Substrate specificity, enantioselectivity and enzyme-substrate docking studies. Zhu D; Yang Y; Buynak JD; Hua L Org Biomol Chem; 2006 Jul; 4(14):2690-5. PubMed ID: 16826293 [TBL] [Abstract][Full Text] [Related]
3. A genomic search approach to identify carbonyl reductases in Gluconobacter oxydans for enantioselective reduction of ketones. Chen R; Liu X; Lin J; Wei D Biosci Biotechnol Biochem; 2014; 78(8):1350-6. PubMed ID: 25130736 [TBL] [Abstract][Full Text] [Related]
4. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Ni Y; Li CX; Wang LJ; Zhang J; Xu JH Org Biomol Chem; 2011 Aug; 9(15):5463-8. PubMed ID: 21670841 [TBL] [Abstract][Full Text] [Related]
5. Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones. Nie Y; Xiao R; Xu Y; Montelione GT Org Biomol Chem; 2011 Jun; 9(11):4070-8. PubMed ID: 21505708 [TBL] [Abstract][Full Text] [Related]
6. A novel carbonyl reductase with anti-Prelog stereospecificity from Acetobacter sp. CCTCC M209061: purification and characterization. Chen XH; Wei P; Wang XT; Zong MH; Lou WY PLoS One; 2014; 9(4):e94543. PubMed ID: 24740089 [TBL] [Abstract][Full Text] [Related]
7. Enantioselective enzymatic reductions of sterically bulky aryl alkyl ketones catalyzed by a NADPH-dependent carbonyl reductase. Zhu D; Hua L J Org Chem; 2006 Dec; 71(25):9484-6. PubMed ID: 17137377 [TBL] [Abstract][Full Text] [Related]
8. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver. Ohara H; Miyabe Y; Deyashiki Y; Matsuura K; Hara A Biochem Pharmacol; 1995 Jul; 50(2):221-7. PubMed ID: 7632166 [TBL] [Abstract][Full Text] [Related]
9. Structural basis for a highly (S)-enantioselective reductase towards aliphatic ketones with only one carbon difference between side chain. Koesoema AA; Sugiyama Y; Xu Z; Standley DM; Senda M; Senda T; Matsuda T Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9543-9553. PubMed ID: 31482280 [TBL] [Abstract][Full Text] [Related]
10. A novel NADH-dependent carbonyl reductase with unusual stereoselectivity for (R)-specific reduction from an (S)-1-phenyl-1,2-ethanediol-producing micro-organism: purification and characterization. Nie Y; Xu Y; Yang M; Mu XQ Lett Appl Microbiol; 2007 May; 44(5):555-62. PubMed ID: 17451525 [TBL] [Abstract][Full Text] [Related]
11. Reversible control of enantioselectivity by the length of ketone substituent in biocatalytic reduction. Koesoema AA; Sugiyama Y; Sriwong KT; Xu Z; Verina S; Standley DM; Senda M; Senda T; Matsuda T Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9529-9541. PubMed ID: 31720775 [TBL] [Abstract][Full Text] [Related]
13. Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis. Chen R; Deng J; Lin J; Yin X; Xie T; Yang S; Wei D Biotechnol Appl Biochem; 2016 Jul; 63(4):465-70. PubMed ID: 25989134 [TBL] [Abstract][Full Text] [Related]
14. Stereoselective enzymatic synthesis of chiral alcohols with the use of a carbonyl reductase from Candida magnoliae with anti-Prelog enantioselectivity. Zhu D; Yang Y; Hua L J Org Chem; 2006 May; 71(11):4202-5. PubMed ID: 16709061 [TBL] [Abstract][Full Text] [Related]
15. Structure-Guided Directed Evolution of a Carbonyl Reductase Enables the Stereoselective Synthesis of (2 Li J; Feng J; Chen X; Gong J; Cui Y; Zhang H; Bu D; Wu Q; Zhu D Org Lett; 2020 May; 22(9):3444-3448. PubMed ID: 32319785 [TBL] [Abstract][Full Text] [Related]
16. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum. Dudzik A; Snoch W; Borowiecki P; Opalinska-Piskorz J; Witko M; Heider J; Szaleniec M Appl Microbiol Biotechnol; 2015 Jun; 99(12):5055-69. PubMed ID: 25549618 [TBL] [Abstract][Full Text] [Related]
17. Biocatalytic production of alpha-hydroxy ketones and vicinal diols by yeast and human aldo-keto reductases. Calam E; Porté S; Fernández MR; Farrés J; Parés X; Biosca JA Chem Biol Interact; 2013 Feb; 202(1-3):195-203. PubMed ID: 23295224 [TBL] [Abstract][Full Text] [Related]
18. One-pot chemoenzymatic synthesis of chiral 1,3-diols using an enantioselective aldol reaction with chiral Zn2+ complex catalysts and enzymatic reduction using oxidoreductases with cofactor regeneration. Sonoike S; Itakura T; Kitamura M; Aoki S Chem Asian J; 2012 Jan; 7(1):64-74. PubMed ID: 22174123 [TBL] [Abstract][Full Text] [Related]