These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 28507175)
1. A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development. de Marcos A; Houbaert A; Triviño M; Delgado D; Martín-Trillo M; Russinova E; Fenoll C; Mena M Plant Physiol; 2017 Jun; 174(2):823-842. PubMed ID: 28507175 [TBL] [Abstract][Full Text] [Related]
2. Down-Regulating the Expression of 53 Soybean Transcription Factor Genes Uncovers a Role for SPEECHLESS in Initiating Stomatal Cell Lineages during Embryo Development. Danzer J; Mellott E; Bui AQ; Le BH; Martin P; Hashimoto M; Perez-Lesher J; Chen M; Pelletier JM; Somers DA; Goldberg RB; Harada JJ Plant Physiol; 2015 Jul; 168(3):1025-35. PubMed ID: 25963149 [TBL] [Abstract][Full Text] [Related]
3. Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level. Jewaria PK; Hara T; Tanaka H; Kondo T; Betsuyaku S; Sawa S; Sakagami Y; Aimoto S; Kakimoto T Plant Cell Physiol; 2013 Aug; 54(8):1253-62. PubMed ID: 23686240 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation of Serine 186 of bHLH Transcription Factor SPEECHLESS Promotes Stomatal Development in Arabidopsis. Yang KZ; Jiang M; Wang M; Xue S; Zhu LL; Wang HZ; Zou JJ; Lee EK; Sack F; Le J Mol Plant; 2015 May; 8(5):783-95. PubMed ID: 25680231 [TBL] [Abstract][Full Text] [Related]
6. Protein phosphatase 2A promotes stomatal development by stabilizing SPEECHLESS in Bian C; Guo X; Zhang Y; Wang L; Xu T; DeLong A; Dong J Proc Natl Acad Sci U S A; 2020 Jun; 117(23):13127-13137. PubMed ID: 32434921 [TBL] [Abstract][Full Text] [Related]
7. IDD16 negatively regulates stomatal initiation via trans-repression of SPCH in Arabidopsis. Qi SL; Lin QF; Feng XJ; Han HL; Liu J; Zhang L; Wu S; Le J; Blumwald E; Hua XJ Plant Biotechnol J; 2019 Jul; 17(7):1446-1457. PubMed ID: 30623555 [TBL] [Abstract][Full Text] [Related]
8. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of Too Many Mouths. Wang M; Yang K; Le J J Integr Plant Biol; 2015 Mar; 57(3):247-55. PubMed ID: 25234048 [TBL] [Abstract][Full Text] [Related]
9. A new loss-of-function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell. Yang K; Jiang M; Le J J Integr Plant Biol; 2014 Jun; 56(6):539-49. PubMed ID: 24386951 [TBL] [Abstract][Full Text] [Related]
10. Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development. Lau OS; Song Z; Zhou Z; Davies KA; Chang J; Yang X; Wang S; Lucyshyn D; Tay IHZ; Wigge PA; Bergmann DC Curr Biol; 2018 Apr; 28(8):1273-1280.e3. PubMed ID: 29628371 [TBL] [Abstract][Full Text] [Related]
11. Modulation of Asymmetric Division Diversity through Cytokinin and SPEECHLESS Regulatory Interactions in the Arabidopsis Stomatal Lineage. Vatén A; Soyars CL; Tarr PT; Nimchuk ZL; Bergmann DC Dev Cell; 2018 Oct; 47(1):53-66.e5. PubMed ID: 30197241 [TBL] [Abstract][Full Text] [Related]
12. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Lau OS; Davies KA; Chang J; Adrian J; Rowe MH; Ballenger CE; Bergmann DC Science; 2014 Sep; 345(6204):1605-9. PubMed ID: 25190717 [TBL] [Abstract][Full Text] [Related]
13. SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Gudesblat GE; Schneider-Pizoń J; Betti C; Mayerhofer J; Vanhoutte I; van Dongen W; Boeren S; Zhiponova M; de Vries S; Jonak C; Russinova E Nat Cell Biol; 2012 Apr; 14(5):548-54. PubMed ID: 22466366 [TBL] [Abstract][Full Text] [Related]
14. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. Liu T; Ohashi-Ito K; Bergmann DC Development; 2009 Jul; 136(13):2265-76. PubMed ID: 19502487 [TBL] [Abstract][Full Text] [Related]
15. Termination of asymmetric cell division and differentiation of stomata. Pillitteri LJ; Sloan DB; Bogenschutz NL; Torii KU Nature; 2007 Feb; 445(7127):501-5. PubMed ID: 17183267 [TBL] [Abstract][Full Text] [Related]
16. Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl. Fuentes S; Cañamero RC; Serna L Int J Dev Biol; 2012; 56(9):675-80. PubMed ID: 23124966 [TBL] [Abstract][Full Text] [Related]
17. Arabidopsis cryptochrome 1 promotes stomatal development through repression of AGB1 inhibition of SPEECHLESS DNA-binding activity. Cao X; Xu P; Liu Y; Yang G; Liu M; Chen L; Cheng Y; Xu P; Miao L; Mao Z; Wang W; Kou S; Guo T; Yang HQ J Integr Plant Biol; 2021 Nov; 63(11):1967-1981. PubMed ID: 34469075 [TBL] [Abstract][Full Text] [Related]
18. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. MacAlister CA; Ohashi-Ito K; Bergmann DC Nature; 2007 Feb; 445(7127):537-40. PubMed ID: 17183265 [TBL] [Abstract][Full Text] [Related]
19. Generation of spatial patterns through cell polarity switching. Robinson S; Barbier de Reuille P; Chan J; Bergmann D; Prusinkiewicz P; Coen E Science; 2011 Sep; 333(6048):1436-40. PubMed ID: 21903812 [TBL] [Abstract][Full Text] [Related]
20. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Pillitteri LJ; Bogenschutz NL; Torii KU Plant Cell Physiol; 2008 Jun; 49(6):934-43. PubMed ID: 18450784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]