These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28507508)

  • 21. Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy.
    van Werkhoven TI; Antonello J; Truong HH; Verhaegen M; Gerritsen HC; Keller CU
    Opt Express; 2014 Apr; 22(8):9715-33. PubMed ID: 24787857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy.
    Pozzi P; Wilding D; Soloviev O; Verstraete H; Bliek L; Vdovin G; Verhaegen M
    Opt Express; 2017 Jan; 25(2):949-959. PubMed ID: 28157989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local aberration control to improve efficiency in multiphoton holographic projections.
    Maddalena L; Keizers H; Pozzi P; Carroll E
    Opt Express; 2022 Aug; 30(16):29128-29147. PubMed ID: 36299095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex-Amplitude-Modulation Vectorial Excitation Beam for High-Resolution Observation of Deep Regions in Two-Photon Microscopy.
    Matsumoto N; Watanabe K; Konno A; Inoue T; Okazaki S
    Front Neurosci; 2022; 16():880178. PubMed ID: 35516810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy.
    Chang CY; Cheng LC; Su HW; Hu YY; Cho KC; Yen WC; Xu C; Dong CY; Chen SJ
    Biomed Opt Express; 2014 Jun; 5(6):1768-77. PubMed ID: 24940539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 1. Methods.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Appl Opt; 2007 Sep; 46(25):6434-41. PubMed ID: 17805384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional wavefront characterization of adaptable corrective optics and Kirkpatrick-Baez mirror system using ptychography.
    Moxham TEJ; Dhamgaye V; Laundy D; Fox OJL; Khosroabadi H; Sawhney K; Korsunsky AM
    Opt Express; 2022 May; 30(11):19185-19198. PubMed ID: 36221703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wavefront detection method of a single-sensor based adaptive optics system.
    Wang C; Hu L; Xu H; Wang Y; Li D; Wang S; Mu Q; Yang C; Cao Z; Lu X; Xuan L
    Opt Express; 2015 Aug; 23(16):21403-13. PubMed ID: 26367988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local wavefront mapping in tissue using computational adaptive optics OCT.
    South FA; Liu YZ; Huang PC; Kohlfarber T; Boppart SA
    Opt Lett; 2019 Mar; 44(5):1186-1189. PubMed ID: 30821744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Versatile all-digital transport-of-intensity based wavefront sensor and adaptive optics using a DMD.
    Singh K; Dudley A; Forbes A
    Opt Express; 2023 Feb; 31(5):8987-8997. PubMed ID: 36860001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of wavefront errors in mouse cranial bone using second-harmonic generation.
    Tehrani KF; Kner P; Mortensen LJ
    J Biomed Opt; 2017 Mar; 22(3):36012. PubMed ID: 28323304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optofluidic adaptive optics in multi-photon microscopy.
    Sohmen M; Muñoz-Bolaños JD; Rajaeipour P; Ritsch-Marte M; Ataman Ç; Jesacher A
    Biomed Opt Express; 2023 Apr; 14(4):1562-1578. PubMed ID: 37078059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique.
    Tang J; Germain RN; Cui M
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8434-9. PubMed ID: 22586078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance evaluation of a sensorless adaptive optics multiphoton microscope.
    Skorsetz M; Artal P; Bueno JM
    J Microsc; 2016 Mar; 261(3):249-58. PubMed ID: 26469361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aberration Correction to Optimize the Performance of Two-Photon Fluorescence Microscopy Using the Genetic Algorithm.
    Yan W; Huang Y; Wang L; Guo Y; Li J; Zhu Y; Yang Z; Qu J
    Microsc Microanal; 2022 Jan; ():1-7. PubMed ID: 35074025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications.
    Akondi V; Jewel MA; Vohnsen B
    J Biomed Opt; 2014 Sep; 19(9):96014. PubMed ID: 25253296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple wavefront correction framework for two-photon microscopy of in-vivo brain.
    Galwaduge PT; Kim SH; Grosberg LE; Hillman EM
    Biomed Opt Express; 2015 Aug; 6(8):2997-3013. PubMed ID: 26309763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correction of spherical aberration in multi-focal multiphoton microscopy with spatial light modulator.
    Matsumoto N; Konno A; Ohbayashi Y; Inoue T; Matsumoto A; Uchimura K; Kadomatsu K; Okazaki S
    Opt Express; 2017 Mar; 25(6):7055-7068. PubMed ID: 28381046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue.
    Wang K; Sun W; Richie CT; Harvey BK; Betzig E; Ji N
    Nat Commun; 2015 Jun; 6():7276. PubMed ID: 26073070
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.