These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28508040)

  • 1. Quantum imaging of current flow in graphene.
    Tetienne JP; Dontschuk N; Broadway DA; Stacey A; Simpson DA; Hollenberg LCL
    Sci Adv; 2017 Apr; 3(4):e1602429. PubMed ID: 28508040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Imaging of Current Density with a Single-Spin Magnetometer.
    Chang K; Eichler A; Rhensius J; Lorenzelli L; Degen CL
    Nano Lett; 2017 Apr; 17(4):2367-2373. PubMed ID: 28329445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Vector AC Magnetometry with a Single Nitrogen-Vacancy Center in Diamond.
    Wang G; Liu YX; Zhu Y; Cappellaro P
    Nano Lett; 2021 Jun; 21(12):5143-5150. PubMed ID: 34086471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric current paths in a Si:P delta-doped device imaged by nitrogen-vacancy diamond magnetic microscopy.
    Basso L; Kehayias P; Henshaw J; Saleh Ziabari M; Byeon H; Lilly MP; Bussmann E; Campbell DM; Misra S; Mounce AM
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36170794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Vector dc Magnetometry via Ancilla-Assisted Frequency Up-Conversion.
    Liu YX; Ajoy A; Cappellaro P
    Phys Rev Lett; 2019 Mar; 122(10):100501. PubMed ID: 30932644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging viscous flow of the Dirac fluid in graphene.
    Ku MJH; Zhou TX; Li Q; Shin YJ; Shi JK; Burch C; Anderson LE; Pierce AT; Xie Y; Hamo A; Vool U; Zhang H; Casola F; Taniguchi T; Watanabe K; Fogler MM; Kim P; Yacoby A; Walsworth RL
    Nature; 2020 Jul; 583(7817):537-541. PubMed ID: 32699401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic Imaging of the Stress Tensor in Diamond Using in Situ Quantum Sensors.
    Broadway DA; Johnson BC; Barson MSJ; Lillie SE; Dontschuk N; McCloskey DJ; Tsai A; Teraji T; Simpson DA; Stacey A; McCallum JC; Bradby JE; Doherty MW; Hollenberg LCL; Tetienne JP
    Nano Lett; 2019 Jul; 19(7):4543-4550. PubMed ID: 31150580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-beam induced nano-etching of suspended graphene.
    Sommer B; Sonntag J; Ganczarczyk A; Braam D; Prinz G; Lorke A; Geller M
    Sci Rep; 2015 Jan; 5():7781. PubMed ID: 25586495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-based materials in electrochemistry.
    Chen D; Tang L; Li J
    Chem Soc Rev; 2010 Aug; 39(8):3157-80. PubMed ID: 20589275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring supercurrent confinement in graphene bilayer weak links.
    Kraft R; Mohrmann J; Du R; Selvasundaram PB; Irfan M; Kanilmaz UN; Wu F; Beckmann D; von Löhneysen H; Krupke R; Akhmerov A; Gornyi I; Danneau R
    Nat Commun; 2018 Apr; 9(1):1722. PubMed ID: 29712916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetometry with nitrogen-vacancy defects in diamond.
    Rondin L; Tetienne JP; Hingant T; Roch JF; Maletinsky P; Jacques V
    Rep Prog Phys; 2014 May; 77(5):056503. PubMed ID: 24801494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene.
    Brenneis A; Gaudreau L; Seifert M; Karl H; Brandt MS; Huebl H; Garrido JA; Koppens FH; Holleitner AW
    Nat Nanotechnol; 2015 Feb; 10(2):135-9. PubMed ID: 25437746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning gradiometry with a single spin quantum magnetometer.
    Huxter WS; Palm ML; Davis ML; Welter P; Lambert CH; Trassin M; Degen CL
    Nat Commun; 2022 Jun; 13(1):3761. PubMed ID: 35768430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved magnetic sensing with electronic spins in diamond.
    Cooper A; Magesan E; Yum HN; Cappellaro P
    Nat Commun; 2014; 5():3141. PubMed ID: 24457937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental observation of the quantum Hall effect and Berry's phase in graphene.
    Zhang Y; Tan YW; Stormer HL; Kim P
    Nature; 2005 Nov; 438(7065):201-4. PubMed ID: 16281031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical investigation of the electronic structure and quantum transport in the graphene-C(111) diamond surface system.
    Selli D; Baburin I; Leoni S; Zhu Z; Tománek D; Seifert G
    J Phys Condens Matter; 2013 Oct; 25(43):435302. PubMed ID: 24096938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.