BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28508352)

  • 21. CD40 ligand-stimulated B cell precursor leukemic cells elicit interferon-gamma production by autologous bone marrow T cells in childhood acute lymphoblastic leukemia.
    Todisco E; Gaipa G; Biagi E; Bonamino M; Gramigna R; Introna M; Biondi A
    Leukemia; 2002 Oct; 16(10):2046-54. PubMed ID: 12357356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between acute lymphoblastic leukemia and bone marrow stromal cells influence response to therapy.
    Tesfai Y; Ford J; Carter KW; Firth MJ; O'Leary RA; Gottardo NG; Cole C; Kees UR
    Leuk Res; 2012 Mar; 36(3):299-306. PubMed ID: 21889797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of residual disease in pediatric B-cell precursor acute lymphoblastic leukemia by comparative phenotype mapping: a study of five cases controlled by genetic methods.
    Dworzak MN; Stolz F; Fröschl G; Printz D; Henn T; Fischer S; Fleischer C; Haas OA; Fritsch G; Gadner H; Panzer-Grümayer ER
    Exp Hematol; 1999 Apr; 27(4):673-81. PubMed ID: 10210325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acute lymphoblastic leukemia cells treated with CpG oligodeoxynucleotides, IL-4 and CD40 ligand facilitate enhanced anti-leukemic CTL responses.
    Fabricius D; Breckerbohm L; Vollmer A; Queudeville M; Eckhoff SM; Fulda S; Strauss G; Debatin KM; Jahrsdörfer B; Meyer LH
    Leukemia; 2011 Jul; 25(7):1111-21. PubMed ID: 21527935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CD58 expression decreases as nonmalignant B cells mature in bone marrow and is frequently overexpressed in adult and pediatric precursor B-cell acute lymphoblastic leukemia.
    Lee RV; Braylan RC; Rimsza LM
    Am J Clin Pathol; 2005 Jan; 123(1):119-24. PubMed ID: 15762287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-kappaB and JNK/AP-1 pathways.
    Scupoli MT; Donadelli M; Cioffi F; Rossi M; Perbellini O; Malpeli G; Corbioli S; Vinante F; Krampera M; Palmieri M; Scarpa A; Ariola C; Foà R; Pizzolo G
    Haematologica; 2008 Apr; 93(4):524-32. PubMed ID: 18322253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective homing of human leukemic B-cell precursors to specific lymphohematopoietic microenvironments in SCID mice: a role for the beta 1 integrin family surface adhesion molecules VLA-4 and VLA-5.
    Messinger Y; Chelstrom L; Gunther R; Uckun FM
    Leuk Lymphoma; 1996 Sep; 23(1-2):61-9. PubMed ID: 9021687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone marrow stroma-derived PGE2 protects BCP-ALL cells from DNA damage-induced p53 accumulation and cell death.
    Naderi EH; Skah S; Ugland H; Myklebost O; Sandnes DL; Torgersen ML; Josefsen D; Ruud E; Naderi S; Blomhoff HK
    Mol Cancer; 2015 Jan; 14(1):14. PubMed ID: 25623255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viable bone marrow stromal cells are required for the in vitro survival of B-cell precursor acute lymphoblastic leukemic cells.
    Ashley DM; Bol SJ; Kannourakis G
    Leuk Res; 1995 Feb; 19(2):113-20. PubMed ID: 7869739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy.
    van Lochem EG; Wiegers YM; van den Beemd R; Hählen K; van Dongen JJ; Hooijkaas H
    Leukemia; 2000 Apr; 14(4):688-95. PubMed ID: 10764156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactivity of acute lymphoblastic leukemia and normal bone marrow cells with the monoclonal anti-B-lymphocyte antibody, anti-Y 29/55.
    Hirt A; Baumgartner C; Forster HK; Imbach P; Wagner HP
    Cancer Res; 1983 Sep; 43(9):4483-5. PubMed ID: 6603266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The imbalanced profile and clinical significance of T helper associated cytokines in bone marrow microenvironment of the patients with acute myeloid leukemia.
    Sun YX; Kong HL; Liu CF; Yu S; Tian T; Ma DX; Ji CY
    Hum Immunol; 2014 Feb; 75(2):113-8. PubMed ID: 24269703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitation of Human herpes virus 6 genome in children with acute lymphoblastic leukemia.
    Seror E; Coquerel B; Gautheret-Dejean A; Ballerini P; Landman-Parker J; Leverger G; Schneider P; Vannier JP
    J Med Virol; 2008 Apr; 80(4):689-93. PubMed ID: 18297709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone marrow fibrosis in childhood acute lymphoblastic leukemia correlates to biological factors, treatment response and outcome.
    Norén-Nyström U; Roos G; Bergh A; Botling J; Lönnerholm G; Porwit A; Heyman M; Forestier E
    Leukemia; 2008 Mar; 22(3):504-10. PubMed ID: 18094715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic tools and new insights for the study of B-cell precursor acute lymphoblastic leukemia.
    Citalan-Madrid AF; Cabral-Pacheco GA; Martinez-de-Villarreal LE; Villarreal-Martinez L; Ibarra-Ramirez M; Garza-Veloz I; Cardenas-Vargas E; Marino-Martinez I; Martinez-Fierro ML
    Hematology; 2019 Dec; 24(1):637-650. PubMed ID: 31514680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving Stratification for Children With Late Bone Marrow B-Cell Acute Lymphoblastic Leukemia Relapses With Refined Response Classification and Integration of Genetics.
    Eckert C; Groeneveld-Krentz S; Kirschner-Schwabe R; Hagedorn N; Chen-Santel C; Bader P; Borkhardt A; Cario G; Escherich G; Panzer-Grümayer R; Astrahantseff K; Eggert A; Sramkova L; Attarbaschi A; Bourquin JP; Peters C; Henze G; von Stackelberg A;
    J Clin Oncol; 2019 Dec; 37(36):3493-3506. PubMed ID: 31644328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia.
    Uy GL; Hsu YM; Schmidt AP; Stock W; Fletcher TR; Trinkaus KM; Westervelt P; DiPersio JF; Link DC
    Leuk Res; 2015 Dec; 39(12):1437-42. PubMed ID: 26467815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The immunophenotypes of blast cells in B-cell precursor acute lymphoblastic leukemia: how different are they from their normal counterparts?
    Sędek Ł; Bulsa J; Sonsala A; Twardoch M; Wieczorek M; Malinowska I; Derwich K; Niedźwiecki M; Sobol-Milejska G; Kowalczyk JR; Mazur B; Szczepański T
    Cytometry B Clin Cytom; 2014 Sep; 86(5):329-39. PubMed ID: 24845957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast, In Vivo Model for Drug-Response Prediction in Patients with B-Cell Precursor Acute Lymphoblastic Leukemia.
    Gauert A; Olk N; Pimentel-Gutiérrez H; Astrahantseff K; Jensen LD; Cao Y; Eggert A; Eckert C; Hagemann AIH
    Cancers (Basel); 2020 Jul; 12(7):. PubMed ID: 32668722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Altered neutrophil immunophenotypes in childhood B‑cell precursor acute lymphoblastic leukemia.
    Oliveira E; Bacelar TS; Ciudad J; Ribeiro MC; Garcia DR; Sedek L; Maia SF; Aranha DB; Machado IC; Ikeda A; Baglioli BF; Lopez-Duarte N; Teixeira LA; Szczepanski T; Silva ML; Land MG; Orfao A; Costa ES
    Oncotarget; 2016 Apr; 7(17):24664-76. PubMed ID: 27028865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.