BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28508642)

  • 1. Identification of Alternative Splice Variants Using Unique Tryptic Peptide Sequences for Database Searches.
    Tran TT; Bollineni RC; Strozynski M; Koehler CJ; Thiede B
    J Proteome Res; 2017 Jul; 16(7):2571-2578. PubMed ID: 28508642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and mass spectrometric analysis of novel splice-junction peptides using RNA-Seq.
    Sheynkman GM; Shortreed MR; Frey BL; Smith LM
    Mol Cell Proteomics; 2013 Aug; 12(8):2341-53. PubMed ID: 23629695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpliceProt: a protein sequence repository of predicted human splice variants.
    Tavares R; de Miranda Scherer N; Pauletti BA; Araújo E; Folador EL; Espindola G; Ferreira CG; Paes Leme AF; de Oliveira PS; Passetti F
    Proteomics; 2014 Feb; 14(2-3):181-5. PubMed ID: 24273012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of alternative splice variants at the proteome level in Aspergillus flavus.
    Chang KY; Georgianna DR; Heber S; Payne GA; Muddiman DC
    J Proteome Res; 2010 Mar; 9(3):1209-17. PubMed ID: 20047314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SpliceVista, a tool for splice variant identification and visualization in shotgun proteomics data.
    Zhu Y; Hultin-Rosenberg L; Forshed J; Branca RM; Orre LM; Lehtiö J
    Mol Cell Proteomics; 2014 Jun; 13(6):1552-62. PubMed ID: 24692640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MaCPepDB: A Database to Quickly Access All Tryptic Peptides of the UniProtKB.
    Uszkoreit J; Winkelhardt D; Barkovits K; Wulf M; Roocke S; Marcus K; Eisenacher M
    J Proteome Res; 2021 Apr; 20(4):2145-2150. PubMed ID: 33724838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of alternative splice variants in Aspergillus flavus through comparison of multiple tandem MS search algorithms.
    Chang KY; Muddiman DC
    BMC Genomics; 2011 Jul; 12():358. PubMed ID: 21745387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel protein isoform derived from cancer-related splicing variants using combined analysis of transcriptome and proteome.
    Hatakeyama K; Ohshima K; Fukuda Y; Ogura S; Terashima M; Yamaguchi K; Mochizuki T
    Proteomics; 2011 Jun; 11(11):2275-82. PubMed ID: 21548097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach.
    Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H
    J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TAPAS: tools to assist the targeted protein quantification of human alternative splice variants.
    Yang JS; Sabidó E; Serrano L; Kiel C
    Bioinformatics; 2014 Oct; 30(20):2989-90. PubMed ID: 24996896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable Digestion Strategies for Phosphoproteomics Analysis.
    Gonczarowska-Jorge H; Dell'Aica M; Dickhut C; Zahedi RP
    Methods Mol Biol; 2016; 1355():225-39. PubMed ID: 26584929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New approach for rapid detection of known hemoglobin variants using LC-MS/MS combined with a peptide database.
    Basilico F; Di Silvestre D; Sedini S; Petretto A; Levreri I; Melioli G; Farina C; Mori F; Mauri PL
    J Mass Spectrom; 2007 Mar; 42(3):288-92. PubMed ID: 17177235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput proteomics detection of novel splice isoforms in human platelets.
    Power KA; McRedmond JP; de Stefani A; Gallagher WM; Gaora PO
    PLoS One; 2009; 4(3):e5001. PubMed ID: 19308253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides.
    Schober Y; Schramm T; Spengler B; Römpp A
    Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2475-83. PubMed ID: 21818808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of CK2 specificity and substrates by proteome-derived peptide libraries.
    Wang C; Ye M; Bian Y; Liu F; Cheng K; Dong M; Dong J; Zou H
    J Proteome Res; 2013 Aug; 12(8):3813-21. PubMed ID: 23808766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpliceCenter: a suite of web-based bioinformatic applications for evaluating the impact of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based studies.
    Ryan MC; Zeeberg BR; Caplen NJ; Cleland JA; Kahn AB; Liu H; Weinstein JN
    BMC Bioinformatics; 2008 Jul; 9():313. PubMed ID: 18638396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A support for the identification of non-tryptic peptides based on low resolution tandem and sequential mass spectrometry data: the INSPIRE software.
    Losito I; Mavelli F; Loiotile AD; Palmisano F
    Anal Chim Acta; 2012 Mar; 718():70-7. PubMed ID: 22305900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utility of mass spectrometry-based proteomic data for validation of novel alternative splice forms reconstructed from RNA-Seq data: a preliminary assessment.
    Ning K; Nesvizhskii AI
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S14. PubMed ID: 21172049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving sensitivity in shotgun proteomics using a peptide-centric database with reduced complexity: protease cleavage and SCX elution rules from data mining of MS/MS spectra.
    Yen CY; Russell S; Mendoza AM; Meyer-Arendt K; Sun S; Cios KJ; Ahn NG; Resing KA
    Anal Chem; 2006 Feb; 78(4):1071-84. PubMed ID: 16478097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.